Math 2270-1

Notes of the date

• Quick review:

• Let \(f \) be a function whose domain is \(\mathbb{R}^n \) and whose range is (a subset of) \(\mathbb{R}^m \), i.e.,

\[
 y = f(x) = \begin{bmatrix}
 f_1(x) \\
 f_2(x) \\
 \vdots \\
 f_m(x)
 \end{bmatrix}
\]

where \(y \) is in \(\mathbb{R}^m \) and \(x \) is in \(\mathbb{R}^n \).

• The function \(f \) is said to be \textbf{linear} if

\[
 f(u + v) = f(u) + f(v) \quad \text{and} \quad f(cu) = cf(u),
\]

for all vectors \(u \) and \(v \) in \(\mathbb{R}^n \) and scalars \(c \).

• Given an \(m \times n \) matrix \(A \) the function (or matrix transform)

\[
 T(x) = Ax
\]

is linear.

Given a linear Transform \(T \) from \(\mathbb{R}^n \) to \(\mathbb{R}^m \) the matrix

\[
 A = \begin{bmatrix}
 T(e_1) & T((e_2) & \ldots & T(e_n)
 \end{bmatrix}
\]

is the \textbf{standard matrix} of \(T \) and

\[
 T(x) = Ax
\]

• Let’s do an example.
Interpretation of Linear Systems

• A mapping

\[T : \mathbb{R}^n \rightarrow \mathbb{R}^m \]

is said to be \textbf{onto} \(\mathbb{R}^m \) (or just \textbf{onto}) if each \(b \) in \(\mathbb{R}^n \) is the image of at least one \(x \) in \(\mathbb{R}^n \).

• In the terminology used by the textbook an equivalent statement is that the range is all of the codomain of \(T \).

• A mapping

\[T : \mathbb{R}^n \rightarrow \mathbb{R}^m \]

is called \textbf{one-to-one} if each \(b \) in \(\mathbb{R}^m \) is the image of at most one \(x \) in \(\mathbb{R}^n \).

• While we are at it: a mapping that is both onto and one-to-one is called a \textbf{bijection}.

• Using this terminology and the transformation

\[T(x) = Ax, \]

discuss the issues of existence and uniqueness of the solution of the linear system.
Caveats

- In the context of today’s discussion we have assumed implicitly that functions are between finite dimensional vector spaces.

- For example, differentiation and integration are also linear, but they cannot in general be written in terms of matrices. (We will see later in the semester how to write those operators as matrices in special cases.)

- The matrix of a linear transformation depends on how we express vectors. We don’t know yet how, but we don’t need to use the standard vectors e_i.
• Suppose T and S are linear transforms from \mathbb{R}^m to \mathbb{R}^n.

• Then so is cT and $S + T$.

• Suppose A and B are the standard matrices of S and T.

• What are the matrices of cT and $S + T$?
The composition of two linear transforms is a linear transform. What is its standard matrix, in terms of the original standard matrices?