Math 1310-4 Notes of October 21, 2019

• The plan for this week is to collect a couple more tools for analyzing extreme values, and then spend the rest of the week solving word problems. It will be fun!

• **The Mean Value Theorem** (page 272, textbook) If f is a differentiable function on the interval $[a, b]$ then there exists a number c in the interval (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a},$$

or, equivalently

$$f(b) - f(a) = f'(c)(b - a).$$

This statement is deceptively simple, like the Intermediate Value Theorem, but it’s very powerful.

![Figure 1. The Mean Value Theorem.](image-url)
• Example $f(x) = x^2$, $0 \leq x \leq 1$

$\begin{align*}
\frac{x - 0}{1 - 0} &= m = 1 \\
\frac{1}{1} &= 1
\end{align*}$

$f(x) = x^2$

$f'(x) = 2x = 1$

$x = \frac{1}{2}$

Figure 2. $f(x) = x^2$, $0 \leq x \leq 1$.
• Example \(f(x) = x^3, \ 0 \leq x \leq 1 \)

\[f'(x) = \frac{2}{3x^3} \]

\[f'(x) = 3x^2 = 1 \]

\[x^2 = \frac{1}{3} \]

\[x = \frac{1}{\sqrt{3}} > \frac{1}{2} \]

Figure 3. \(f(x) = x^3, \ 0 \leq x \leq 1 \).
• Recall our previous discussion of derivatives:

• If \(f'(x) > 0 \) on an interval then \(f \) is increasing on that interval.

• If \(f'(x) < 0 \) on an interval then \(f \) is decreasing on that interval.

• Recall that a critical number of a function \(f \) is a number \(c \) where \(f'(c) = 0 \) or \(f'(c) \) does not exist.

• **The First Derivative Test.** Suppose that \(c \) is a critical number of a continuous function.

 • if \(f' \) changes from positive to negative at \(c \) then \(f \) has a local maximum at \(c \). (First we go up, then we go down.)

 • if \(f' \) changes from negative to positive at \(c \) then \(f \) has a local minimum at \(c \). (First we go down, then we go up.)

• Example: \(f(x) = x^2 \)

\[
\begin{align*}
f'(0) &= 0 \\
f(0) &= 0 \\
f'(x) &= 2x \\
f(x) &= \begin{cases} x & x > 0 \\
0 & x = 0 \\
-x & x < 0 \end{cases}
\end{align*}
\]
- \(f(x) = \sin x \)

- \(f(x) = |x| \)

- \(f(x) = \sqrt{|x|} \)

\begin{align*}
\text{if} & \quad x < 0 \\
\frac{d}{dx} f(x) & = \left(-x\right)^{1/2} \\
\frac{d}{dx} f(x) & = \frac{-1}{2} \left(-x\right)^{-1/2} \\
& = -\frac{1}{2 \sqrt{-x}}
\end{align*}

\begin{align*}
\text{if} & \quad x > 0 \\
\frac{d}{dx} f(x) & = \frac{1}{2 \sqrt{x}} \\
& = \frac{-1}{2 \sqrt{-x}}
\end{align*}

\textbf{Figure 4.} \(f(x) = \sin x, \ 0 \leq x \leq 1. \)
• Clearly, if f'' is positive, then f' is increasing. We are making a left turn as we drive from left to right.

• Similarly, if f'' is negative we make a right turn.

• This leads to the following definition: A function (or its graph) is concave up on an interval I if f' is an increasing function on I. In is concave down if f' is a decreasing function on I.

• If f'' is positive on I then f is concave up on I, and if f'' is negative, then f is concave down. (The textbook calls this the “concavity test”, see page 275.)

• Example: $f(x) = x^2$

• Example: $f(x) = \sin x$
Inflection Points

- A point on the graph of f at which the direction of concavity changes (from up to down or down to up) is called an \textbf{inflection point}.

- If f is twice differentiable the second derivative changes sign.

- If the second derivative is continuous the second derivative equals zero at the inflection point.

- If the second derivative is zero there may or may not be an inflection point.

- Example: $f(x) = x^3$

- Example: $f(x) = x^4$
• Second derivatives can be used to identify the nature of a stationary point.

• The textbook (p. 275) introduces the **second derivative test**.

• Suppose f'' is continuous near c. Then

 (a) If $f'(c) = 0$ and $f''(c) > 0$, then f has a local minimum at c.

 (b) If $f'(c) = 0$ and $f''(c) < 0$, then f has a local maximum at c.

 (c) If $f'(c) = 0$ and $f''(c) = 0$, then the test is inconclusive.

• **Examples**

 $f(x) = x^2$
\[f(x) = \sin x \]

\[f(x) = x^3 \]

\[f(x) = x^4 \]
\[f(x) = \frac{1}{x^2 + 1} \]
\[f'(x) = -\frac{2x}{(x^2 + 1)^2} \]
\[f''(x) = \frac{6x^2 - 2}{(x^2 + 1)^3} \]

\[6x^2 - 2 = 0 \]
\[x^2 = \frac{1}{3} \]
\[x = \pm \frac{1}{\sqrt{3}} \]

Figure 5. \(f(x) = \frac{1}{x^2 + 1} \).
1

\[f(x) = e^{-10x} - e^{-3x} \quad \left[0, 2 \right] \quad f(0) = 0 \]

\[f'(x) = -10 e^{-10x} + 3 e^{-3x} = 0 \]

\[10 e^{-10x} = 3 e^{-3x} \quad -0.0024 \]

\[\frac{10}{3} = \frac{e^{-3x}}{e^{-10x}} = e^{7x} \]

\[7x = \ln \left(\frac{10}{3} \right) \]

\[x = \frac{1}{7} \ln \left(\frac{10}{3} \right) = 0.172 \]

\[f = -0.4178 \]

6

\[y = x^3 + 10x \]

\[x = x(t) \]

\[\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} \]

\[22 \cdot 5 = 110 \]

\[\frac{dy}{dx} = 3x^2 + 10 \quad x = 2 \Rightarrow \frac{dy}{dx} = 22 \]
$s' = \frac{s}{h} = \frac{d+s}{H}$

$\frac{s'h - s'h'}{h^2} = \frac{s'}{H}$

$\frac{s'}{h} - \frac{s'h'}{h^2} = \frac{s'}{H}$

$\frac{s'}{h} - \frac{s'h'}{h^2} = \frac{s'h'}{h^2}$

$s'(H-h) = s'H - s'h = \frac{s'h'H}{h}$

$s' = \frac{s'h'H}{h(H-h)} = \frac{(d+s)h'H}{H(H-h)}$
\[S = 0 \quad h = 0 \quad = \frac{d H - H}{H^2} \]

\[= \frac{d H}{H} \]

\[= \frac{d v}{H} \]