3.9 Linear Approximation and Differentials

- **Major Idea:** The tangent is the best local linear approximation of a function.

\[f(x) \approx L(x) = f(a) + f'(a)(x - a) \]

- The graph of \(L \) is the tangent of the graph of \(f \) at \(x = a \) and \(L \) is the linearization of \(f \) at \(a \).

\[f(x) \approx L(x) = f(a) + f'(a)(x - a) \]

- Revisit

\[f(x) \approx L(x) = f(a) + f'(a)(x - a) \]

- The graph of \(L \) is the tangent line at \(x = a \).

\[a = L(a) = f(a) - f'(a)(a - a) = f(a) \]

\[f'(a) = L'(a) = \]
Figure 1. Linearization of the exponential at $x = 0$.

Example:
\[e^x \approx L(x) = x + 1 \]

\[
\begin{array}{ccccc}
 x & e^x & x + 1 & e^x - (x + 1) \\
 0.2 & 1.221 & 1.2 & 0.021 \\
 0.1 & 1.105 & 1.1 & 0.005 \\
 0.0 & 1 & 1 & 0.0 \\
 -0.1 & 0.95 & 0.9 & 0.005 \\
 -0.2 & 0.819 & 0.8 & 0.019 \\
\end{array}
\]
Figure 2. graph of $e^x - (x + 1)$.
Differentials

Recall

$$\Delta y = f(a + \Delta x) - f(a)$$

$$f'(a) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{dy}{dx}$$

• If dx and dy were variables this would lead to

$$dy = f'(a)dx \approx \Delta y$$ \hspace{1cm} (1)

and

$$f(x) = f(a + \Delta x) = f(a) + \Delta y \approx f(a) + f'(a)dx$$

• In the equation (1) dx and dy are in fact often considered variables. If so they are called differentials.

• Another way of looking at linear approximation is

$$\Delta y \approx dy = f'(a)dx.$$

• The derivative is the limit of the quotient of change in f divided by the change in x. Correspondingly:

$$\Delta y \approx dy = f'(a)dx.$$

The change in f equals approximately the change in x multiplied with the derivative.
The derivative gives you the factor by which to multiply the change in the independent variable to get the change in the dependent variable.

- these statements are variations of our theme that the derivatives measures the rate of change of the function.

Example:

Approximate $\sqrt{26}$ using the fact that $f(x) = \sqrt{x}$

\[\sqrt{25} = 5 \quad \text{and} \quad \frac{d}{dx} \sqrt{x} = \frac{1}{2\sqrt{x}} \]

- The change in x is 1. The derivative of f at $x = 25$ equals

\[\frac{1}{2\sqrt{25}} = \frac{1}{10}. \]

The square root of 26 equals approximately 5.1.

\[5.09902 = \sqrt{26} \approx \sqrt{25} + \frac{1}{10} \times 1 = 5.1. \]
Example 4, p. 244, textbook: The radius of a sphere was measured and found to be 21 cm with a possible error in measurement of at most 0.05 cm. Approximate the maximum error in using this value of the radius to compute the volume of the sphere.

Let \(r \) denote the radius of the sphere. Then its volume is

\[
V = \frac{4}{3}\pi r^3.
\]

Denoting the error in \(r \) by \(dr = \Delta r \), the corresponding error in \(V \) is

\[
\Delta V \approx dV = \frac{d}{dr}Vdr = 4\pi r^2 dr.
\]

With \(r = 21 \) and \(dr = 0.05 \) this becomes

\[
dV = 4\pi(21)^2 \times 0.05 = 277.09
\]

The maximum error in the volume is approximately 277 cubic centimeters.

That may seem a lot, but compare it with the relative maximum error which is

\[
\frac{dV}{V} = \frac{4\pi(21)^2 \times 0.05}{\frac{4}{3}\pi \times 21^3} \approx 0.0071 = 0.71\%.
\]

Compare this with the error of

\[
\frac{0.05}{21} = 0.0024 = 0.24\%
\]

in \(r \).
Error and Relative Error

- Example: Making cylinders

\[V = \pi r^2 h \]

- Denote errors in \(v, r, \) and \(h \) by \(\Delta V, \Delta r, \) and \(\Delta h, \) respectively. The corresponding relative errors are \(\Delta V/V, \Delta r/r, \) and \(\Delta h/h, \) respectively.

- How does the relative error in \(V \) depend on the relative error in \(r \) or \(h? \)

- Is it more important to get the radius right, or the height? Does the answer depend on the numerical values of radius and height?

- We get

\[
\begin{align*}
\text{h:} & \quad \frac{\Delta V}{V} \approx \frac{dV}{dh} \frac{dh}{V} = \frac{\pi r^2 dh}{\pi r^2 h} = \frac{dh}{h} \\
\text{and} \quad \text{r:} & \quad \frac{\Delta V}{V} \approx \frac{dV}{dr} \frac{dr}{V} = \frac{2\pi rh dh}{\pi r^2 h} = \frac{2dr}{r}
\end{align*}
\]

- An error of 1% in the radius will cause twice as much relative error in the volume as an error of 1% in the height.

- It’s twice as important to get the radius right as it is to get the height right.
Newton’s Method

• A major idea! Linearize, solve the linear problem, repeat.

• Deliberately introduced in hw problems (with explanation). You want to learn how to learn concepts on your own by reading . . .

• We’ll visit the subject in more depth on October 29.

• However, here is the basic idea. We want to solve $f(x) = 0$. x is a “root”, “zero”, or “x-intercept” of f.

• Suppose we can’t. For example: $f(x) = e^x + x = 0$. Try it!

• Start with an approximation. Linearize. Solve linear problem. Repeat.

• Suppose x_k is the current approximation.

• Solve

$$f(x) \approx f(x_k) + f'(x_k)(x - x_k) = 0$$

for $x = x_k - f(x_k)/f'(x_k)$.

• Thus Newton’s Method is defined by:

1. x_0 given. (Its value depends on the problem.)
2. Define

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
for $k = 0, 1, 2, \ldots$

3. Stop when the newest x_{k+1} is good enough. (The meaning of that phrase also depends on the problem.)
Newton's Method graphically:

Example \(\sqrt[3]{27} = 3 \)

\[f(x) = x^3 - 2 = 0 \]

\[f'(x) = 3x^2 \]

\[x_0 = 1.2 \]

\[x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \]

\[= x_k - \frac{x_k^3 - 2}{3x_k^2} \]

\[= \frac{3x_k^3 - x_k^3 + 2}{3x_k^2} \]

\[= \frac{2x_k^3 + 2}{3x_k^2} \]
Return to the linear approximation of the exponential. It matches the value and the derivative of the exponential at $x = 0$. Could we match second derivatives (in addition to value and first)? third? n-th? ("Laboratory Project", page 247).

Figure 3. Matching more derivatives.
How can we do this?