Math 1310-4 Notes of September 4, 2016

• We did not quite finish yesterday’s notes. Here is the last page from those notes:

Limits

• (Definition, page 95). We write

$$\lim_{x \to a} f(x) = L$$

and say “the limit of $f(x)$, as x approaches a, equals L”, if we can make the values of $f(x)$ arbitrarily close to L (as close to L as we like) by taking x to be sufficiently close to a (on either side of a) but not equal to a.

• We saw

$$\lim_{h \to 0} \frac{(a + h)^2 - a^2}{h} = 2a.$$ What are f, x, L, and a in this context?

• We also saw today, for example:

$$\lim_{h \to 0} \frac{(a + h)^3 - a^3}{h} = 3a^2$$

$$\lim_{h \to 0} \frac{\sqrt{a + h} - \sqrt{a}}{h} = \frac{1}{2\sqrt{a}}$$

$$\lim_{h \to 0} \frac{\frac{1}{a+h} - \frac{1}{a}}{h} = -\frac{1}{a^2}$$

• We need to get more systematic about this kind of result.

• (We also saw today how important it is to understand algebra.)
2.2 Limits

• (Definition, page 95). We write

\[\lim_{x \to a} f(x) = L \]

and say
- the limit of \(f(x) \), as \(x \) approaches \(a \), equals \(L \),
 if we can make the values of \(f(x) \) arbitrarily close to \(L \) (as close to \(L \) as we like) by taking \(x \) to be sufficiently close to \(a \) (on either side of \(a \)) but not equal to \(a \).

• This can also be written as

\[f(x) \to L \quad \text{as} \quad x \to a \]

• Other ways of stating the fact verbally include:
 - \(f(x) \) approaches \(L \) as \(x \) approaches \(a \)
 - \(f(x) \) goes to \(L \) as \(x \) goes to \(a \).

• Some examples are obvious

\[\lim_{x \to 0} \pi + x = \]

\[\lim_{x \to 1} \pi + x = \]

\[\lim_{x \to 1} \sqrt{3} + x = \]
• Here is a slightly trickier example:

\[
\lim_{x \to \pi} f(x) =
\]

where

\[
f(x) = \begin{cases}
1 & \text{if } x = \pi \\
2 & \text{if } x \neq \pi
\end{cases}
\]
• However, some limits aren’t obvious. Let’s look at two examples:

\[
\lim_{t \to 0} \frac{\sqrt{9+t^2} - 3}{t^2} = \quad \text{(Example 2, p. 97, textbook)}
\]

and

\[
\lim_{x \to 0} \frac{\sin x}{x} =
\]

• We will use 3 approaches to limit computation:
 – Evaluating at \(x \) close to \(a \), and guessing
 – Graphing
 – Algebraic

• Maple demonstration . . . you can use this maple code (without the line numbers), for example:

```plaintext
restart;
z:=(sqrt(t**2+9)-3)/(t**2);
evalf(subs(t=0.1,z));
evalf(subs(t=0.01,z));
evalf(subs(t=0.001,z));
evalf(subs(t=0.0001,z));
evalf(subs(t=0.00001,z));
plotsetup(ps,plotoutput='11a.ps',plotoptions='portrait, noborder,height=700,width=700');
plot(z,t=-1..1,numpoints=2000,thickness=2);
z:=(sin(x)/x);
evalf(subs(x=0.1,z));
evalf(subs(x=0.01,z));
evalf(subs(x=0.001,z));
evalf(subs(x=0.0001,z));
evalf(subs(x=0.00001,z));
plotsetup(ps,plotoutput='11b.ps',plotoptions='portrait, noborder,height=700,width=700');
plot(z,x=-1..1,numpoints=2000,thickness=2);
```

Math 1310-4 Notes of September 4, 2016 page 4
This gives the following (redacted) output

```maple
> restart;

> z:=((sqrt(t**2+9)-3)/(t**2));

2 1/2
(t + 9) - 3
z := ---------------
    2
    t

> evalf(subs(t=0.1,z));

0.1666204000

> evalf(subs(t=0.01,z));

0.1666700000

> evalf(subs(t=0.001,z));

0.1670000000

> evalf(subs(t=0.0001,z));

0.2000000000

> evalf(subs(t=0.00001,z));

0.

> z:=(sin(x)/x);

z := ------
    x

> evalf(subs(x=0.1,z));

0.9983341665

> evalf(subs(x=0.01,z));

0.9999833334

> evalf(subs(x=0.001,z));

0.9999998333

> evalf(subs(x=0.0001,z));

0.9999999983

> evalf(subs(x=0.00001,z));

1.000000000
```

Math 1310-4 Notes of September 4, 2016 page 5
• We also obtain these Figures:

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{graph.png}
\caption{Graph of $\frac{\sqrt{9+t^2} - 3}{t^2}$.}
\end{figure}
and

Figure 2. Graph of \(\frac{\sin(x)}{x} \).
Algebraic calculation of $\lim_{t \to 0} \frac{\sqrt{9+t^2}-3}{t^2} =$
• Algebraic calculation of \(\lim_{x \to 0} \frac{\sin x}{x} = \)
• Example: What about the limit of $\sqrt{-x}$ as x approaches zero?

• Recall our definition. We write

$$\lim_{x \to a} f(x) = L$$

and say

- **the limit of** $f(x)$, **as** x **approaches** a, **equals** L,

 if we can make the values of $f(x)$ arbitrarily close to L (as close to L as we like) by taking x to be sufficiently close to a (on either side of a) but not equal to a.
One-sided Limits

• Definition 2 (p.100), textbook:
 We write
 \[\lim_{x \to a^-} = L \]
 and say the **left-hand limit of** \(f(x) \) **as** \(x \) **approaches** \(a \) **is equal to** \(L \) if we can make the values of \(f(x) \) arbitrarily close to \(L \) by taking \(x \) to be sufficiently close to \(a \) and \(x \) less than \(a \).

• Other ways of stating this fact include:

 – The **limit of** \(f(x) \) **as** \(x \) **approaches** \(a \) **from the left** is \(L \)
 – As \(x \) **approaches** \(a \) **from the left** \(f(x) \) **approaches** \(L \)
 – \(f(x) \) **goes to** \(L \) **as** \(x \) **approaches** \(a \) **from the left.**

• In the same way we can define a right-hand limit.

• **Exercise:** Modify the above language to define

 \[\lim_{x \to a^+} = L \]

• Clearly:

 \[\lim_{x \to a} f(x) = L \] if and only if \[\lim_{x \to a^+} f(x) = L \] and \[\lim_{x \to a^-} f(x) = L \]
The Heaviside Function

Figure 3. The Heaviside Function.

\[H(t) = \begin{cases} 0 & \text{if } t < 0 \\ 1 & \text{if } t \geq 0 \end{cases} \]

\[\lim_{t \to 0^-} H(t) = \]

\[\lim_{t \to 0^+} H(t) = \]
\[\lim_{t \to 0} H(t) = \]
The limit may not exist

- What can go wrong?

\[
\lim_{x \to 0^-} f(x) =
\]

\[
\lim_{x \to 0^+} f(x) =
\]

\[
\lim_{x \to 0} f(x) =
\]

Figure 4. \(f(x) = \frac{1}{x^2} \).
The limit may not exist

Figure 5. $f(x) = 1/x$.

$$f(x) = \frac{1}{x}$$

$$\lim_{x \to 0^-} f(x) =$$

$$\lim_{x \to 0^+} f(x) =$$

$$\lim_{x \to 0} f(x) =$$
A Perverse Example

\[f(x) = \sin \frac{1}{x} \]

Figure 6. \(f(x) = \sin \frac{1}{x}, -0.4 \leq x \leq 0.4 \).

\[\lim_{x \to 0^-} \sin \frac{1}{x} = \]

\[\lim_{x \to 0^+} \sin \frac{1}{x} = \]
Figure 7. $f(x) = \sin \frac{1}{x}, -0.04 \leq x \leq 0.04$.

$$\lim_{x \to 0} \sin \frac{1}{x} =$$
Figure 8. $f(x) = \sin \frac{1}{x}, -0.004 \leq x \leq 0.004.$
More Perverse Examples

\[f(x) = \begin{cases}
1 & \text{if } x \text{ is rational} \\
0 & \text{if } x \text{ is irrational}
\end{cases} \]

\[f(x) = \begin{cases}
x^2 & \text{if } x \text{ is rational} \\
0 & \text{if } x \text{ is irrational}
\end{cases} \]