Review

\[f(t) = A_0 a^t \quad \text{if} \quad a > 0 \quad a = e^{\ln a} \]

\[= A_0 (e^{\ln a})^t \quad a \neq 1 \quad \text{a base} \]

\[= A_0 e^{(\ln a)t} \quad t \text{ time} \]

\[= A_0 e^{kt} \quad A_0 = \text{initial value} \]

\[k = \ln a \]

\[f'(t) = A_0 e^{kt} \]

\[= k A_0 e^{kt} \]

\[= kf(t) \]

\[a > 1, \quad k > 0 \quad \text{exponential growth} \]

\[a < 1, \quad k < 0 \quad \text{exponential decay} \]

\[f(t+T) = A_0 e^{k(t+T)} = e^{kT} A_0 e^{kt} \]

\[T \text{ constant} \quad = e^{kT} f(t) \]

\[\text{Doubling time} \ T \quad e^{kT} = aT \]

\[f(t+T) = 2f(t) = e^{kT} f(t) \]
\[e^{kT} = 2 \]

\[kT = \ln 2 \]

\[T = \frac{\ln 2}{k} \]

Doubling time \(T \)

Effective annual interest rate is 5%

\[a = 1.05 \]

\[1.05^T = 2 \]

\[T \ln 1.05 = \ln 2 \]

\[T = \frac{\ln 2}{\ln 1.05} \]

\[T \approx 14.2 \]

\(^{14}\text{C} \quad 5730 \text{ years}\)

22% \(\frac{^{14}\text{C}}{\text{C}} \) in a sample of leather

when was the leather made

\[a^T = \left(\frac{1}{2} \right)^{\frac{T}{5730}} = 0.22 \]

\[T = ? \]
\[T = \frac{\ln 0.22}{\ln 0.5} \cdot 5730 \]

\[f(t) = \left(\frac{1}{2} \right)^{5730/2} = a^t = e^{kt} \]

\[k = \ln a = \ln \left(\frac{1}{2} \right) \]

\[DT = 66 \text{ years} \]

\[f(t) = 2^{-t/66} \quad a = 2 \]

Tripling time 15 years

\[f(t) = 3^{t/15} \]

Half-life 7 years

\[f(t) = \left(\frac{1}{2} \right)^{t/7} = 2^{-t/7} \]
\[a_n = \left(\frac{1}{2} \right)^{n/7} \quad a_{n+1} = \left(\frac{1}{2} \right)^{n/7} \cdot a_n \]

\[
\sum_{n=0}^{\infty} a_n = \frac{1}{1-r} = \frac{1}{1-\left(\frac{1}{2}\right)^{1/7}} \quad \text{WTT}
\]

- \(p \%) \text{ interest per month} \)
- add \(A \) each month \(a = 1 + \frac{p}{100} \)
- how much do you have after \(n \) months

\[
A \cdot a^n + A \cdot a^{n-1} + A \cdot a^{n-2} + \ldots + A \cdot a + A = A \left(\sum_{k=0}^{n} a^k \right) = A \cdot \frac{1-a^{n+1}}{1-a}
\]

\[
A = 1 \quad p = 0.5
\]

\[
A = 1 + \frac{0.5}{100} = 1.005
\]

\(n = 600 \) months

Total Investment is 600

Total savings = \(\frac{1-a^{601}}{1-a} \)