Reminders

- Do use DSs: today, 3:00pm, Scott
- I am working on the exam. There are a lot of them! Will publish scores and answers probably on Thursday.
- Tomorrow is election day. We will have class, however.
- Of course you know we switched to Mountain Standard Time

Quick Review

- $\sum_{k=0}^{\infty} a_n$ converges absolutely if $\sum_{k=0}^{\infty} |a_n|$ converges.
- absolute convergence implies convergence!

\[\text{the converse does does not hold!} \]

- **Absolute Ratio Test** for $\sum_{n=1}^{\infty} a_n$:

- Suppose

\[\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho \]
Then:

\[
\begin{aligned}
 &\text{if } \rho < 1 \text{ then } \sum_{n=1}^{\infty} a_n \text{ converges (absolutely)} \\
 &\text{if } \rho > 1 \text{ then } \sum_{n=1}^{\infty} a_n \text{ diverges} \\
 &\text{if } \rho = 1 \text{ then the test is inconclusive}
\end{aligned}
\]

• Basically: The series behaves like a geometric series with ratio \(\rho \).
9.6 Power Series

- You can think of a power series as a polynomial with infinitely many terms:

\[s(x) = \sum_{k=0}^{\infty} a_k x^k. \] (1)

- If the upper limit was \(n \) instead of infinity we’d have an ordinary polynomial of degree \(n \). In other words, the partial sums of a power series are ordinary polynomials.

- We can now ask the following Questions:
 1. For what values of \(x \) does the power series converge?
 2. Can we get an expression for the sum of the series in terms of \(x \) if the series does converge?
 3. Can we combine (add, subtract, multiply, divide, compose) power series, or differentiate or integrate them, just like polynomials?

- **Definition:** The convergence set (CS for short) of (1) is the set of all real numbers \(x \) for which the power series converges.
Example:

\[s(x) = \sum_{k=0}^{\infty} x^k \]

- This is an ordinary geometric series.
- The absolute ratio test turns into

\[\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \frac{|x^{n+1}|}{|x^n|} = |x| \]

and the series will converge (to \(\frac{1}{1-x} \)) if and only if \(|x| < 1 \).
- Of course, we knew that already!
Example:

\[s(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} \]
Example:

\[s(x) = \sum_{k=0}^{\infty} k! x^k \]
These examples sum up all possibilities:

- The convergence set of

\[s(x) = \sum_{k=0}^{\infty} a_k x^k \]

is

(i) the single point \(x = 0 \), or

(ii) an interval of the form \((-R, R)\), with \(R > 0 \), plus possibly one or both end points, or

(iii) the set of all real numbers.

- In the cases (i), (ii), (iii) we say that the radius of convergence of the power series is 0, \(R \), or infinity, respectively.

Every power series has a convergence set of one of those three types. **There are no other possibilities.**

This is not obvious, and, I think, actually counter-intuitive!

- It is worth our while to study this fact closely, to see why, and not just, that it is true.

- So here is the proof from the textbook.

- Suppose

\[s(x) = \sum_{n=0}^{\infty} a_n x^n \]
converges for
\[x = x_1 \neq 0. \]

• Then
\[\lim_{n \to \infty} a_n x_1^n = 0 \]
and there exists a number \(N \) such that
\[|a_n x_1^n| < 1 \]
for all \(n > N \).

• Suppose that
\[|x| < |x_1|. \]
Then
\[|a_n x^n| = |a_n x_1^n| \left| \frac{x}{x_1} \right|^n < \left| \frac{x}{x_1} \right|^n < 1. \]

• Now note that
\[\sum \left| \frac{x}{x_1} \right|^n \]
is a geometric series with ratio
\[\left| \frac{x}{x_1} \right| < 1. \]
It converges, and by the ordinary comparison
test so does
\[\sum_{n=0}^{\infty} |a_n x^n|. \]

• So, if \(s(x) \) converges for \(x = x_1 \), it also con-
 verges for every \(x \) with
 \[|x| < |x_1|. \]

• By the same token, if it diverges for \(x = x_2 \)
 then it diverges for all \(x \) with
 \[|x| > |x_2| \]
 since if it did converge for \(x \) it would also have to converge for \(x_2 \).

• This establishes our statement about the three
 kinds of convergence sets.

• Note that we actually established absolute con-
 vergence.

• A power series converges absolutely in
 the interior of its convergence set!

• Let’s do more examples!
\[s(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}. \]
\[s(x) = \sum_{n=1}^{\infty} \frac{x^n}{n \times 2^n}. \]
Shift of Origin

- The point $x = 0$ is special for a power series. It is the center of the convergence set.

- Of course, we can do a **shift of origin**, or a **change of variable**:

- The series

 $$s(x) = \sum_{n=1}^{\infty} a_n(x - a)^n$$

 is a power series in $x - a$, centered at $x = a$.

- Example:

 $$s(x) = \sum_{n=2}^{\infty} \frac{(x + 2)^n \ln n}{n \times 3^n}.$$

- Find the convergence set.
Example:

\[s(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k + 1)!} \]

\[= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \ldots \]