Math 1220-3

Notes of 1/17/18

6.3 The natural exponential function

- Recall: we defined the natural logarithm $\ln x$ as
 $$\ln x = \int_1^x \frac{1}{t} dt$$

- This implies immediately, by the FToC, that
 $$\frac{d}{dx} \ln x = \frac{1}{x}.$$

- $\ln x$ is invertible.

- How do we know that?

- We denoted the inverse of $\ln x$ by $\exp x$ and call that inverse the natural exponential.

- We are used to thinking of the natural exponential as e^x where e is the number whose natural logarithm is 1, i.e.,
 $$\exp(\ln x) = x$$

 $$\ln e = \int_1^e \frac{1}{t} dt = 1,$$ \hspace{1cm} (1)

 or

 $$e = \exp 1.$$
Figure 1. Definition of e.

- According to http://www.numberworld.org/digits/E/, as of August 20, 2016, e has been computed to 5 billion digits.

- Here are the first few:

$$e = 2.71828 18284 59045 23536 02874 71352$$

$$66249 77572 47093 69995 95749 66967 62772 40766$$

$$30353 54759 45713 82178 52516 64274 27466 39193$$

$$20030 59921 81741 35966 29043 57290 03342 95260$$

$$59563 07381 32328 62794 34907 63233 82988 \ldots$$
• We need to show that

\[\exp x = e^x \quad (2) \]

• This follows from our earlier observation that

\[\ln a^r = r \ln a \]

because

\[\ln e^x = x \ln e = x = \ln \exp x \quad \Rightarrow \exp x = e^x \]

and (2) follows.

• You may remember from College Algebra that \(e \) can be defined by compounding 100 percent interest continuously. This leads to the definition

\[e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \]

• We will see later in the semester that the so defined limit gives the same value of \(e \) as we obtained via the area definition (1) of \(e \).
Differentiation of Exponentials and Logarithms

- We can now work with our new differentiation rules:

\[
\frac{d}{dx} \ln x = \frac{1}{x} \\
\frac{d}{dx} e^x = e^x
\]

- Let’s do examples:

\[
\frac{d}{dx} 10^x = \frac{d}{dx} \left(e^{\ln 10}\right)^x = \frac{d}{dx} e^{x \ln 10} = e^{x \ln 10} \cdot \ln 10 = 10^x \ln 10
\]

\[
\frac{d}{dx} b^x = b^x \ln b \quad b > 0
\]

\[
10 = e^{\ln 10}
\]
• Recall the conversion formula for logarithms:

\[
\log_b x = \frac{\ln x}{\ln b}
\]

• why?

\[
\begin{align*}
\log_b x &= x \left(\frac{1}{\ln b}\right) \\
\log_b x &= \log_b (\ln b) \\
\log_b x &= \frac{\ln x}{\ln b}
\end{align*}
\]
\[
\frac{d}{dx} \ln(\sin x) = \frac{\cos x}{\sin x}
\]

\[
\frac{d}{dx} \sin(\ln x) = \frac{\cos(\ln x)}{x} = \frac{1}{x} \cdot \cos(\ln x)
\]

\[
\frac{d}{dx} e^{\sin x} = e^{\sin x} \cdot \cos x
\]

\[
\frac{d}{dx} \sin e^x = (\cos e^x) e^x
\]

\[
\frac{d}{dx} \sin e^{x^2} = (\cos e^{x^2}) e^{x^2} - 2x = 2xe^{x^2} \cos e^{x^2}
\]

\[
\frac{d}{dx} e^{e^x} = e^{e^x} \cdot e^x = e^{x+e^x}
\]
What about integration?

\[\int e^{-4x} \, dx = -\frac{1}{4} e^{-4x} + C \]

\[u = -4x \]
\[du = -4 \, dx \quad \Rightarrow \quad dx = \frac{du}{-4} \]

\[\int e^{-4x} \, dx = \int e^u \, \frac{du}{-4} = -\frac{1}{4} \int e^u \, du = -\frac{1}{4} e^u + C = -\frac{1}{4} e^{-4x} + C \]

\[I = \int_0^1 e^{-4x} \, dx = \left[-\frac{1}{4} e^{-4x} \right]_0^1 = -\frac{1}{4} (e^{-4} - 1) \]

\[I = \int x^2 e^{-x^3} \, dx = \]

\[u = -x^3 \]
\[du = -3x^2 \, dx \]
\[x^2 \, dx = -\frac{1}{3} \, du \]

\[I = \int \frac{1}{3} e^u \, du = -\frac{1}{3} e^u + C = -\frac{1}{3} e^{-x^3} + C \]

\[\int xe^{-x^3} \, dx = \text{hopeless} \]

\[\frac{e^{-x^3}}{x^2} + C \]

Math 1220-3 Notes of 1/17/18 page 7
Let’s look at the graph of

$$f(x) = e^{-x^2}$$

and compute some derivatives.

Figure 2. $f(x) = e^{-x^2}$ and some derivatives.
\[f'(x) = -2xe^{-x^2} \]
\[f''(x) = -2e^{-x^2} + (-2x)(-2x)e^{-x^2} \]
\[= -2e^{-x^2} + 4xe^{-x^2} \]