Math 1210-23

Remaining Events

Fr 4/12 Center of Mass, 5.6 textbook
— Study Session, Andy, after class
— 2:00-2:50, Office Hours, Alex

Mo 4/15 Calculus of Exponentials and Logarithms, 6.1—
5, textbook

— 9:40-10:25, Peter, Office Hours, JWB 127
— 12:55-1:45, Mia, Office Hours, LCB 322
Tu 4/16 Review
— 11:50-12:40, Office Hours, Liza, LCB 322
— 2:00-2:50 Study Session, Andy, MLi 1130
We 4/17 Review
— 9:40-10:30, Study Session, Andy, LCB 215
— 11:50-12:40, Office Hours, Liza, LCB 322
Th 4/18 Last Day of Labs
Fr 4/19 Review
— 9:40-10:30, Office Hours, Peter, JWB 127
— Study Session, Andy, after class
— 2:00-2:50 Office Hours, Alex
Mo 4/22 Review
— 9:40-10:25, Peter, Office Hours, JWB 127
— 12:55-1:45, Mia, Office Hours, LCB 322
Tu 4/23 Review, Classes end
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— 11:50-12:40, Office Hours, Liza, LCB 322
— 2:00-2:50 Study Session, Andy, MLi 1130
We, 4/24 Reading Day, no events

Th, 4/25 Study Session, Peter, 10:30am-11:55am, LCB
215

Fr, 4/26 Study Session, Peter, 10:30am-12:30pm, LCB
215

Mo, 4/29 10:30am-12:30pm, Final Exam, The End
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Notes of 4/12/24

5.6 Center of Mass

e Another application of integration.

e We start with a seesaw. z indicates location
along the seesaw. The fulcrum is at x = 0 and
we have two masses m; and mso at locations
x1 and xo, respectively.
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e Noting that x; is negative we see that the
seesaw will be in equilibrium if

1M1 + Toamo = 0.
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e Here is a modification of the previous prob-
lem. Suppose you have n masses mqy, mao, ...,
my in locations 1, x2, ..., £,. How do you
choose the location z of the fulcrum so that
the seesaw is in equilibrium?
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e You can see where this is going!
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e What if we have a continuous mass distribu-
tion?

e Like a wire with varying density.
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mass of material in [z, z + Ax]

density d(x) = Alim . A
r—> i

e Could be caused by varying the thickness of
the wire, for example.

e As many times before, the sums turn into in-
tegrals:
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Example 2: Suppose

e Expectations?
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Figure 1. Example 2.
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Point Masses in a plane

e Suppose we have point masses (x;, y;, m;), i =
1,2,...n on a massless platter. Where do we
need to support the platter to keep it in equi-
librium?

A

/
X —X X
v &~ X ol
¢ &[7)

§ m;x; § m;iy;
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T=—" and y=—
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e Example: Suppose we have the three masses

(0,1,3), (1,0,2), and (0,0,1). Where is the
center of mass?

L

(1,0,2)
(901) %
Figure 2. Three Points.

e Expectations?
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e What is the continuous analog?

e Where do you support a thin region to keep

it balanced?

e For simplicity let’s assume the material is ho-

mogeneous:

5vay):: 1

e Suppose the region is bounded by two func-
tions, f(z) and g(z) where a < z < b.
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Figure 3. A Lamina.

e We divide the region into vertical slice and
think of each slice as being approximately a
rectangle. The mass of the rectangle is pro-
portional to its area, and we think of that
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area as being concentrated in the center of
the rectangle.
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e The point formulas

n n
§ m;x; § miyz
_ 1=1 — =1
T=—" and y=—
> mi > mi
=1 =1
turn into

and

e This is not intuitive!

e The formulas for # and ¥ ought to be more

symmetric.
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e In Math 2210 we will learn about multiple
integrals, and obtain symmetric formulas.

e For our purposes today, let’s finish this off by
looking at an example.

e Semi-circle, radius 1,

f(x)=+1—22 and g(x)=0

-
\/ P 4 2’
(
L 5 . | X3
Figure 4. Semi-circle. - |x¥-=
Z 3
e Expectations? ' /
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e (very) major omission this semester: Deriva-
tives and integrals of exponentials and loga-
rithms.

e Any guess?
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Figure 5. The Exponential.
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