Math 1210-23

Notes of 3/22/24

Definite Integrals—Quick Review

e Recall that f; f(z)dz is the definite inte-
gral of f with respect to x from a to

b.
e 1 is the integration variable.
e f(x) is the integrand.

e a and b are the lower and upper limits of
integration, respectively.

e We defined the definite integral as the limit
of a Riemann Sum.

e Geometrically the definite integral gives the
area of the region under the curve.
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4.3-4.4 The Fundamental Theorem of Calculus

e We'll spend two days on sections 4.3 and 4.4
combined.

e Recall that we introduced derivatives and in-
tegrals by going back and forth between ve-
locity and location.

e Naturally these two processes are inverses of
each other.

e The Fundamental Theorem of Calculus (FToC)
makes this precise.

e It comes in two flavors.

e Theorem A, page 235

where F'(z) = f(x).
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e The textbook calls these the first and second
fundamental theorem of Calculus, but the two
statements are equivalent and there is really
only one FToC.

e We need to learn how to use these facts, and
we need to see why they are true and why
they are equivalent.

e Before thinking about why the statements are
true and equivalent, let’s do some examples.
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Why is the FToC true?
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e The second version follows easily from the

first. }{mdf _ A(x) = F) - Fea)
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e The first version follows easily from the sec-
ond.

}f{é)#: Acxd = F(x) = Fea)
A

¢ L .
d (feodt = i%— A () “dx[l:(x) Fc 3>
dx w«w d )

Math 1210-23 Notes of 3/22/24 page 8



e The two versions of the FToC are two sides
of the same coin.

There is only one FToC.

Integration and Differentiation are opposite
processes.

e You want to understand and remember those
facts!
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e Another Example.
e Suppose

2

G(:c)zf 2t + 3t2dt.
0

e Compute G'(z) in two different ways.
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e Compare the previous example with

d ttdt = 2°
d.fC 0

e In this case we cannot first compute the defi-
nite integral.

e So what about
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e In general we have

e Don’t try to memorize this formula. It comes
straight from the FToC and the Chain Rule
and is easy to derive when needed.

e More examples:

L[
d 11)2 t2 XZ) _ ZX
a fO e dt = é, 25( - ZX
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Math 1210-23 Notes of 3/22/24 page 12



Notation

e Here are some frequent notations for the def-
inite integral.

e Suppose F' is an antiderivative of f, i.e.,

=
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