Math 1210-23

Notes of 02/20/24

- We are done with Chapter 2. Exam 2 will cover Chapter 2, and will take place next week, after the last hw covering chapter 2 is closed.
$\left(\operatorname{hw}^{\wedge} 7\right)$
3.1 Minima and Maxima
- Entering new chapter
- Minimization and Maximization: obviously important, and major application of Calculus.
- Example: Recall an old home work problem: What's the maximum value of

$$
f(x)=x^{2}(1-x)
$$

in the interva $[0,1]$?

Figure 1. Graph of $f(x)=x^{2}(1-x)$.

$$
\begin{aligned}
f(x)=x^{2}(1-x) & =x^{2}-x^{3} \\
f^{\prime}(x) & =2 x-3 x^{2} \\
& =x(2-3 x)=0
\end{aligned}
$$

$$
\text { 1. } x=0
$$

$$
\begin{aligned}
2-3 x & =0 \\
x & =\frac{2}{3}
\end{aligned}
$$

$$
f\left(\frac{2}{3}\right)=\left(\frac{2}{3}\right)^{2}-\left(\frac{2}{3}\right)^{3}
$$

$$
\begin{aligned}
& =\frac{4}{9}-\frac{8}{27} \\
& =\frac{12}{27}-\frac{8}{27}=\frac{4}{27} \\
& \text { Notes of 02/20/24 page 2 }
\end{aligned}
$$

- Example:

$$
f(x)=\sin x
$$

$1 \pi+\frac{\pi}{2}$

- Maxima at

$$
x=2 n \pi+\frac{\pi}{2} \quad n \text { integer },
$$

- Minima at

$$
x=2 n \pi+\frac{3 \pi}{2} \quad n \text { integer. }
$$

We have $f^{\prime}(x)=\cos x=0$ at those points.

Vocabulary

- Suppose $y=f(x), f$ a given function.
- f has a maximum value $f(c)$ at $x=c$ if $f(c) \geq f(x)$ for all x in the domain of f.
- f has a minimum value $f(c)$ at $x=c$ if $f(c) \leq f(x)$ for all x in the domain of f.
- f has an extreme value $f(c)$ at $x=c$ if it has a minimum or maximum value at $x=c$.
- We need to refine this terminology later.
- So at what kind of points c can we get extreme values?
- It turns out that there are just three kinds:
- c is a stationary point if $f^{\prime}(c)=0$.

- c is a singular point if $f^{\prime}(c)$ does not exist.

- c is a boundary point if is a boundary point of the domain of f.
- Collectively, these three kinds of points are called critical points.

- Extreme values can occur only at critical points!
- The word point refers to a value of the ingependent variable, not to a point in the plane.
- why only those three kinds of points?

- Example:

$$
\begin{aligned}
& f(x)=-2 x^{3}+3 x^{2} \quad-\frac{1}{2} \leq x \leq 2 \quad\left[-\frac{1}{2}, 2\right] \\
& \begin{array}{c|c}
C P & f(C P) \text { no singular pto } 18 \\
\hline 1 \frac{1}{2}
\end{array} \\
& \text { stat. pts: } \\
& f^{\prime}(x)=-6 x^{2}+6 x \\
& =-6 x(x-1)=0 \\
& -2 \cdot\left(\frac{-1}{2}\right)^{3}+3 \cdot\left(\frac{1}{2}\right)^{2} \\
& =\frac{+2}{8}+\frac{3}{4}=1
\end{aligned}
$$

Math 1210-23 Notes of $02 / 20 / 24$ page 6

- The calculations are consistent with the graph:

Figure 3. Graph of $f(x)=-2 x^{3}+3 x^{2},-\frac{1}{2} \leq x \leq 2$.

- Example 2: $f(x)=x^{3},-2 \leq x \leq 2$.

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2} \\
& f^{\prime}(0)=0
\end{aligned}
$$

Figure 4. Graph of $f(x)=x^{3}$.

Math 1210-23 Notes of 02/20/24 page 8

General Procedure

- So, to find extreme values of f, we proceed as follows:

1. Find all critical points (stationary, singular, or boundary) of f.
2. Evaluate f at those critical points.
3. Find the min and the max.

- Often there are no singular points, and in word problems what happens at the boundary points is often obvious.
- Example: Find the extreme values of

$$
f(x)=\frac{x}{1+x^{2}} \quad f(1)=\frac{1}{2}
$$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1+x^{2}-x \cdot 2 x}{\left(1+x^{2}\right)^{2}} \\
&=\frac{1-x^{2}}{\left(1+x^{2}\right)}=0 \\
& x= \pm 1
\end{aligned}
$$

Figure 5. Graph of $f(x)=\frac{x}{1+x^{2}}$.

- A word problem: You design the layout of a (large, fancy, coffee-table) book. Each page should have an area of 72 square inches for text and pictures, 1 inch wide margins on the left and right, and 2 inch margins on top and bottom. What are the dimensions of each page that minimize the overall area (and cost) of each page?
- First think of expectations. Is the page going to be square, landscape (wider than high), or portrait (higher than wide)?
- How much higher? Twice as high, more than twice, less than twice?

$$
A=W H=\min !
$$

$$
x y=72
$$

$$
y=\frac{i 2}{x}
$$

$$
\begin{aligned}
A=W H & =(x+2)(y+4) \\
& =(x+2)\left(\frac{72}{x}+4\right)
\end{aligned}
$$

$$
\begin{aligned}
&=72+\frac{144}{x}+4 x+8 \\
&=80+4 x+\frac{144}{x}=f(x) \\
& f^{\prime}(x)=4-\frac{144}{x^{2}}=0 \\
& 4=\frac{144}{x^{2}} \\
& \frac{x^{2}}{144}=\frac{1}{4} \\
& x^{2}=144 \cdot \frac{1}{4}=36 \\
& x^{2}=36 \\
& x^{2}=C \quad w=6+2=8 \\
& y=\frac{72}{6}=12 \quad f 1=12+4
\end{aligned}
$$

