We are done with Chapter 2. Exam 2 will cover Chapter 2, and will take place next week, after the last hw covering chapter 2 is closed.

3.1 Minima and Maxima

- Entering new chapter
- Minimization and Maximization: obviously important, and major application of Calculus.
- Example: Recall an old home work problem: What’s the maximum value of

\[f(x) = x^2(1 - x) \]

in the interval \([0, 1]\)?
Figure 1. Graph of $f(x) = x^2(1 - x)$.
• Example:
 \[f(x) = \sin x \]

• Maxima at
 \[x = 2n\pi + \frac{\pi}{2} \quad n \text{ integer}, \]

• Minima at
 \[x = 2n\pi + \frac{3\pi}{2} \quad n \text{ integer}. \]

We have \(f'(x) = \cos x = 0 \) at those points.

\[\text{Figure 2. Sine and Cosine.} \]
Vocabulary

- Suppose \(y = f(x) \), \(f \) a given function.
- \(f \) has a **maximum value** \(f(c) \) at \(x = c \) if
 \[f(c) \geq f(x) \]
 for all \(x \) in the domain of \(f \).
- \(f \) has a **minimum value** \(f(c) \) at \(x = c \) if
 \[f(c) \leq f(x) \]
 for all \(x \) in the domain of \(f \).
- \(f \) has an **extreme value** \(f(c) \) at \(x = c \) if it
 has a minimum or maximum value at \(x = c \).
- We need to refine this terminology later.
- So at what kind of points \(c \) can we get extreme values?
- It turns out that there are just three kinds:
 - \(c \) is a **stationary point** if \(f'(c) = 0 \).
 - \(c \) is a **singular point** if \(f'(c) \) does not exist.
 - \(c \) is a **boundary point** if \(c \) is a boundary point
 of the domain of \(f \).
- Collectively, these three kinds of points are
 called **critical points**.
- Extreme values can occur only at critical points!
- The word **point** refers to a value of the independent variable,
 not to a point in the plane.
• why only those three kinds of points?
• Example:

\[f(x) = -2x^3 + 3x^2 \quad \frac{1}{2} \leq x \leq 2 \]
• The calculations are consistent with the graph:

Figure 3. Graph of $f(x) = -2x^3 + 3x^2$, $-\frac{1}{2} \leq x \leq 2$.
• Example 2: $f(x) = x^3$, $-2 \leq x \leq 2$.

Figure 4. Graph of $f(x) = x^3$.
General Procedure

- So, to find extreme values of f, we proceed as follows:

1. Find all critical points (stationary, singular, or boundary) of f.
2. Evaluate f at those critical points.
3. Find the min and the max.

- Often there are no singular points, and in word problems what happens at the boundary points is often obvious.
Example: Find the extreme values of

\[f(x) = \frac{x}{1 + x^2} \]

Figure 5. Graph of \(f(x) = \frac{x}{1 + x^2} \).
A word problem: You design the layout of a book. Each page should have an area of 72 square inches for text, 1 inch wide margins on the left and right, and 2 inch margins on top of bottom. What are the dimensions of each page that minimize the overall area?