Math 1210-23

- No class or office hours on Monday!
- Study Session today, after class, right here!

Notes of 2/16/24

2.9 Differentials and Approximation

- An application of derivatives
- Recall that the Greek capital letter Δ (Delta) is often used to denote differences:

$$
\Delta f=f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)
$$

- Recall our definition:

$$
f^{\prime}\left(x_{0}\right)=\lim _{\Delta x \longrightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}
$$

- rise over run, slope of secant approaches slope of tangent, average velocity approaches instantaneous velocity.
- We can turn things around, not take the limit, and think of the slope of the tangent (i.e., the derivative) as an approximation of the slope of the secant

$$
f^{\prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}
$$

for some specific $\Delta x \neq 0$.

- This can be rewritten as

$$
\Delta f=f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right) \approx f^{\prime}\left(x_{0}\right) \Delta x
$$

- This can be considered the key property of the derivative:
The change in the function value equals approximately the change in the ingependent variable multiplied with the derivalive.
- The approximation is the better the smaller the change in the independent variable.

Put differently: To approximate the change in the output multiply the change in the input with the derivative!

2This makes the chain rule more plausible. When you compose two functions then each multiplies a change in input by its derivative, and so the composition multiplies with the product of the derivatives. Thus the derivative of the composition equals the product of the derivatives.

- Example: Suppose you need a good approximation of $\sqrt{4.6}$ and your calculator is broken.
- We can easily compute $\sqrt{4}=2$.
- Let

$$
f(x)=\sqrt{x} \quad \Longrightarrow \quad f^{\prime}(x)=\frac{1}{2 \sqrt{x}} .
$$

- Then

$$
\begin{aligned}
f(4.6)-f(4.0) & =\sqrt{4.6}-\sqrt{4.0} \\
& \approx f^{\prime}(4) \times(4.6-4.0) \\
& =\frac{4.6-4.0}{2 \sqrt{4.0}} \\
& =0.15
\end{aligned}
$$

and hence
$\sqrt{4.6}=\sqrt{4}+(\sqrt{4.6}-\sqrt{4}) \approx 2+0.15=2.15$.

- The difference between the true function value and its approximation is called the error.
- In this case $\sqrt{4.6}=2.1448 \ldots$ and the error is

$$
\sqrt{4.6}-4.15=-0.0052 \ldots
$$

- This works the better the smaller the difference in inputs. In this case this means the number whose square root we want to approximately is closer to 4 .
- Consider this Table:
$\Delta x \quad x_{0}+\Delta x \quad f\left(x_{0}+\Delta x\right) \quad f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \Delta x$

Δx	$4+\Delta x$	$\sqrt{4+\Delta x}$	$2+\frac{\Delta x}{\sqrt{4}}$	error
0.6	4.6	2.144761059	2.150000000	-0.005238
0.3	4.3	2.073644135	2.075000000	-0.001356
0.15	4.15	2.037154879	2.037500000	-0.000345
0.075	4.075	2.018662924	2.018750000	-0.000087

2 Note that as we go from one line to the next the value of Δx is halved. On the other hand, the error is reduced by a factor about 4 .

- This means the error goes to zero faster than linearly.
- In a profound way this behavior can be used to define the derivative, but that subject is beyond our scope.

Linear Approximation

- We saw that in general

$$
f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

- The right hand side of this approximation is a linear function of x. (Its graph of course is the tangent line at $\left(x_{0}, f\left(x_{0}\right)\right)$. It is called the linear approximation of f at (or about) x_{0}.
- Some examples for linear approximations:

$$
\begin{aligned}
& f(x)=\sqrt{x} \approx 2+\frac{x-4}{2 \sqrt{4}} \quad=\quad 2+\frac{x-4}{4} \quad\left(x_{0}=4\right) \\
& f(x)=\sin x \approx \sin (0)+(x-0) \cos 0 \quad=\quad x \quad\left(x_{0}=0\right) \\
& f(x)=x^{2} \quad \approx 1^{2}+2 \times 1 \times(x-1)=1+2(x-1) \quad\left(x_{0}=1\right)
\end{aligned}
$$

Figure 1. Linear Approximation of $f(x)=x^{2}$.

Math 1210-23 Notes of 2/16/24 page 6

- Another Example: You manufacture cubes. Their nominal length s (and width and height) are 12 inches. How will an error of Δs effect the volume (and weight and material cost) of the cube?
- Here is a similar Table as in the first example:

Δs	$s_{0}+\Delta s$	$f\left(s_{0}+\Delta s\right)$	$f\left(s_{0}\right)+f^{\prime}\left(s_{0}\right) \Delta s$	
Δs	$12+\Delta s$	$(12+\Delta s)^{3}$	$12^{3}+3 \times 144 \times \Delta s$	error
1	13	2197	2160	37
0.1	12.1	1771.561	1771.2	0.361000
0.01	12.01	1732.323601	1732.32	0.003601
0.001	12.001	1728.432036	1728.432	0.000036

- In this case we reduce the change by a factor 10 each time, and the error is reduced by a factor $100=10^{2}$.

Notation

- The notation and terminology is confusing. Don't loose track of the key idea: change in output equals approximately the change in input multiplied with the derivative.
- We consider the equation $y=f(x)$. x is the independent variable, y the dependent variable.
- Δx is an arbitrary increment in the independent variable.
- $\mathrm{d} x=\Delta x$ is called the differential of the independent variable x.
- $\Delta y=\Delta f=f(x+\Delta x)-f(x)$ is the actual change in the dependent variable (or the function, or the output).
- $\mathrm{d} y$ is the differential of the dependent variable y, defined by

$$
\begin{equation*}
\mathrm{d} y=f^{\prime}(x) \mathrm{d} x \tag{1}
\end{equation*}
$$

In this context you can think of both $\mathrm{d} y$ and $\mathrm{d} x$ as ordinary variables. The equation (1) is extremely suggestive. It can be rewritten as

$$
\begin{equation*}
f^{\prime}(x)=\frac{\mathrm{d} y}{\mathrm{~d} x} \tag{2}
\end{equation*}
$$

- Previously we thought of (2) as a short hand notation for derivatives. Now we are thinking of the differential $\mathrm{d} x$ and $\mathrm{d} y$ as variables.
- However, with this new notation we have the key fact

$$
\Delta y \approx \mathrm{~d} y=f^{\prime}(x) \mathrm{d} x
$$

- Again, this captures the key idea: change in output equals approximately the change in input multiplied with the derivative.
- Another Example. Let's consider a cylinder. How does a relative error in radius ($\frac{\Delta r}{r}$) or height $\left(\frac{\Delta h}{h}\right)$, affect the relative error in the volume ($\frac{\Delta V}{V}$)?
- The relative error might be measured in percent.
- Casually speaking, when making cylinders, it's more important (twice as important!) to get the radius right, than to get the height right.

Math 1210-23 Notes of $2 / 16 / 24$ page 12

Aside: More Confusion

- Using the Leibniz notation

$$
f^{\prime}(x)=\frac{\mathrm{d} y}{\mathrm{~d} x}
$$

and at the same time thinking of the differentials as variables can lead to confusing notation.

- For example, recall the product rule:

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} x}(u v) & =u v^{\prime}+v u^{\prime} \tag{3}\\
& =u \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \frac{\mathrm{~d} u}{\mathrm{~d} x}
\end{align*}
$$

- "Multiplying with $\mathrm{d} x$ " turns this into

$$
\begin{equation*}
\mathrm{d}(u v)=u \mathrm{~d} v+v \mathrm{~d} u \tag{4}
\end{equation*}
$$

- The textbook does use this notation in some places. See the Table on page 143 (and the box in the margin next to that Table). I think of that notation as extremely confusing, and avoid it when possible. You can go from (4) to (3) by "dividing by $\mathrm{d} x$ ".

