Math 1210-23, Spring 2024
Notes of 2/6/24
The Onion Method of Differentiation


$$
f^{\prime}(x)=\frac{\left(\sin ^{2} x^{2}+x \cdot 2 \sin x^{2} \cos x^{2} \cdot 2 x\right) \sqrt{1+x^{2}}-x \sin x^{2} \cdot \frac{2 x}{2 \sqrt{1+x^{2}}}}{1+x^{2}}
$$

- Let's note what rule to apply:

1. Pow $R$
2. Pow R
3. $\sin R$
4. Pow R
5. $P R$
6. const $R$
7. Pow R
8. $\operatorname{Sum} R$
9. $\sqrt{7} R$
10. $Q R$

Now compute the derivative, and mark it with square brackets if you like. This is problem 19 of kw 5 . It will take you some time to work out the derivative, and to write it in a form that ww will interpret correctly.

Math 1210-23, Spring 2024 Notes of $2 / 6 / 24$ page 2

- Of course, you don't want to have to draw boxes and label them.
- Instead handle the onion layers mentally.
- Problem 64, page 124. Find the equation of the tangent line to

$$
(0,1)
$$

$$
=3 \cdot 2^{5}+4 \cdot 2^{5}
$$

$$
=3.32+4.32
$$

$$
=96+128=224
$$

$$
\begin{aligned}
\frac{y-32}{x-1} & =224 \\
& =224(x-1) \\
y-32 & =224 x-224 \quad 1+32 \\
y & =224 x-192
\end{aligned}
$$

$$
\begin{aligned}
& \text { at }(1,32) \text {. } \\
& x=1 \quad y=\left(1^{2}+1\right)^{3}\left(1^{4}+1\right)^{2} \\
& =2^{3} 2^{2}=2^{5}=32 \\
& y^{\prime}=3\left(x^{2}+1\right)^{2} 2 x\left(x^{4}+1\right)^{2}+\left(x^{2}+1\right)^{3} 2\left(x^{4}+1\right) 4 x^{3} \\
& x=1 \quad y^{\prime}=3 \cdot 2^{2} \cdot 2 \cdot 2^{2}+2^{3} \cdot 2 \cdot 2 \cdot 4
\end{aligned}
$$

- A major way to check your answers is to compute them in two different ways. For example, problem 14, page 123. Compute

$$
f^{\prime}(x)=\frac{d}{d x}\left(\frac{x-2}{x-3}\right)^{-3}=\frac{d}{d x} \frac{(x-3)^{3}}{(x-2)^{3}} \quad x^{-4}=\frac{1}{x^{4}}
$$

in two (or more) different ways:

$$
\begin{aligned}
f^{\prime}(x) & =-3\left(\frac{x-2}{x-3}\right)^{-4} \frac{x-3-(x-2)}{(x-3)^{2}} \\
& =+3 \frac{(x-3)^{4}}{(x-2)^{4}} \frac{1}{(x-3)^{2}} \\
& =\frac{3(x-3)^{2}}{(x-2)^{4}} \\
2 & =\frac{d}{d x} \frac{(x-3)^{3}}{(x-2)^{3}}=\frac{3(x-3)^{2}(x-2)^{3}-(x-3)^{3} \cdot 3(x-2)^{2}}{(x-2)^{6}} \\
& =\frac{3\left((x-3)^{2}(x-2)-(x-3)^{3}\right)}{(x-2)^{4}} \\
& =\frac{3(x-3)^{2}(x-2-(x-3))}{(x-2)^{2} 4} \\
& =\frac{3(x-3)^{2}}{(x-2)^{4}}
\end{aligned}
$$

- Problem 81, page 125. Suppose $f(0)=0$ and $f^{\prime}(0)=2$. What is

$$
\frac{\mathrm{d}}{\mathrm{~d} x} f(f(\underline{f(f(x)))})
$$

at $x=0$ ? What about

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \underbrace{f(f(f}_{100 \text { evaluations of } f} \quad \ldots \underbrace{) \ldots)}_{100 \text { closing parentheses }} \text { ? }
$$

$$
\begin{aligned}
& f(0)=0 \\
& f^{\prime}(0)=2 \\
& \frac{d}{d x} f(f(x))=\underbrace{f^{\prime}(f(x)}_{2}) \cdot \underbrace{f^{\prime}(x)}_{2} \\
& x=0 \\
& \frac{d}{d x} f(f(f(x)))=\underbrace{f^{\prime}(\underbrace{f(f(x)}_{2})}_{2} \cdot \underbrace{d x}_{0} \cdot \underbrace{d x}_{16} f(f(x)) \\
& x=0\left.\frac{d}{d x} f(f(f(f(x))))\right)
\end{aligned}
$$

- Use the product rule to derive the power rule for positive integers by induction.
- Reinterpret the quotient rule by applying the power rule: how

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \frac{f(x)}{g(x)} & =\frac{\mathrm{d}}{\mathrm{~d} x}\left(f(x) \times \frac{1}{g(x)}\right) \\
& =\frac{\mathrm{d}}{\mathrm{~d} x} f(x) \times \frac{1}{g(x)}+f(x) \frac{\mathrm{d}}{\mathrm{~d} x} \frac{1}{g(x)} \\
& =\frac{f^{\prime}(x)}{g(x)}+f(x) \times\left(-\frac{g^{\prime}(x)}{g^{2}(x)}\right) \\
& =\frac{f^{\prime}(x)}{g(x)}-\frac{f(x) g^{\prime}(x)}{g^{2}(x)}
\end{aligned}
$$

which is of course the same as

$$
=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g^{2}(x)}
$$

## Higher Order Derivatives

- Differentiating a function gives a new function. How about differentiating that new function?
- For example, the derivative of location is velocity, and the derivative of velocity is acceleration!
- acceleration is the second derivative of location.
- Higher order derivatives are our next subject.

