Announcements

tomorrow, Wednesday: review of Chapter 1.

Friday, 2/2/24: Exam 1 on Chapter 1, Limits.

Derivatives will be the contents of Exam 2, 3/1/24

I usually proctor exams myself, but this particular exam
will be run by Andy. I am also unable to hold office
hours on Friday, April 2, 2024

February
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Taking Stock

Notes of 1/30/24

e Suppose f and g are functions of x, k is constant, and
n 18 a positive integer.

e So far, we have the following differentiation rules:
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e The first and second property together are equivalent
to saying that
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2.5 The Chain Rule

e Recall function composition

fog(@) = f(g(x))).

e The Chain Rule can be written as

%f(g(ﬂﬁ)) = f'(g9(x))g'(x).

e In other words, the derivative of the composition
is the product of the derivatives.
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e The Power Rule says

d n n—l n=1,23. ...

e We also know the chain rule and
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e Query: What is the derivative of
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e Can we use the quotient rule?
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e Why does the Chain Rule work?
e This is actually a little tricky, see the textbook.

e But here is a very compelling more casual argument:
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What can go wrong?
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e Here is another more suggestive way, using Leibniz No-
tation:

o Let
u = g(x).

e Then, by the chain rule

d d df du
L= o) = g (@) = L

e The du “cancel”

e Leibniz notation is often used for this kind of mental
crutch.
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More Examples
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e Recall: a function is even if

f(z) = f(—2)
for all x in the domain, and it is odd if
f(z) = —f(-=)

e Show that the derivative of an even function is odd.
‘)( (%) = F (-%)
V4 V4
y () = -—f (-x)

e Similarly, the derivative of an odd function is even.
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e More Examples:
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