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Abstract

In this diploma thesis we discuss about the Hardy-Littlewood maximal operator and
some results on the regularity properties. We distinguish the continuous and the
discrete formulations. We explain theorems concerning the maximal function of a
Sobolev function and the maximal function of a function of bounded variation. The
final chapter is devoted to present some convolution type maximal operators and
their regularity properties. The philosophy of this work is to determine if these
operators preserve the differentiability and the variation of the functions and if we
can give estimates to control it.



Chapter 1

The Hardy-Littlewood maximal
function

The purpose of this report is to present some studies on the regularity properties
of the Hardy-Littlewood maximal operator. Maximal operators are central objects
in harmonic analysis with applications to pointwise convergence of Fourier series,
ergodic theorems and pointwise convergence of solutions of partial differential equa-
tions [3, 9]. The Hardy-Littlewood maximal operator is well known for its application
to the Lebesgue Differentiation Theorem. Other applications to PDEs suggest that
it is important to study how the maximal operator interacts with the regularity of
the functions, see references in [7]. This means to study if the maximal operator
keeps, destroys or improves the weak differentiability of the initial function.

In this chapter, we will present some definitions and basic properties needed to
understand the subsequent chapters. This part of the report is based on classical
literature [5, 10, 11].

1.1 Definition and elementary properties

We will start with the following definition of our central object of discussion. Let
f ∈ Lloc(Rd). The centered maximal function of f is

Mf(x) = sup
r>0

1

m(B(x, r))

∫
B(x,r)

|f(y)|dy. (1.1)

The non-centered maximal function of f is

M̃f(x) = sup
x∈B

1

m(B)

∫
B

|f(y)|dy. (1.2)
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In these definitions, B(x, r) represents the open ball centered at x and radius r,
m(B(x, r)) denotes its Lebesgue measure. In (1.2) B is any open ball and we do not
specify the center, we only require that the ball contains x.

We can consider the maximal operator (non-centered) as f 7→Mf (f 7→ M̃f).
The definition of this object has a very nice motivation, the Lebesgue Differentiation
Theorem; when we consider the averages

Arf(x) =
1

m(B(x, r))

∫
B(x,r)

f(y)dy

and ask whether the limit Arf → f holds almost everywhere as r → 0. Note that
Mf(x) = supr>0Ar|f |(x).

We prove the following fundamental theorem, we will use it several times across
our discussions. This is a classical fact about the Hardy-Littlewood maximal opera-
tor, see [10, 11].

Theorem 1.1 (Weak and strong type inequalities). Let f be a function defined in
Rd.

(i) If f ∈ Lp(Rd), 1 ≤ p ≤ ∞, then the function M̃f is finite almost everywhere.

(ii) If f ∈ L1(Rd), then for every α > 0,

m{x : M̃f(x) > α} ≤ A

α
||f ||1 (1.3)

where A depends only on the dimension d.

(iii) If f ∈ Lp(Rd), 1 < p ≤ ∞, then the function M̃f ∈ Lp(Rd) and

||M̃f ||p ≤ Ap||f ||p (1.4)

where Ap depends only on the value of p and the dimension d.

It is important to comment that Theorem 1.1 holds for the centered maximal
function as well, since the non-centered maximal function is computed by taking
more averages than the centered, consequently we have the inequality Mf ≤ M̃f
everywhere.
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The conclusion in part (iii) is false for p = 1 unless f = 0 almost everywhere. To
see this, let R be a real number bigger than 1, and notice that for x ∈ Rd such that
|x| ≥ R, we have

Mf(x) ≥ 1

m(B(x,R + 1))

∫
B(x,R+1)

|f(y)|dy

≥

∫
B(0,1)|f(y)|dy

m(B(0, 1))

1

(R + 1)d

≥ C
1

(|x|+ 1)d
.

If we assume without loss of generality that
∫
B(0,1)

|f(y)|dy 6= 0, the constant C

above is positive. It is true that Mf is not L1 since the lower bound 1
(|x|+1)d

is not
integrable at infinity.

Before going to the proof of Theorem 1.1, we will prove the following useful fact:

Lemma 1.2 (Vitali covering). Let E a measurable subset of Rd that is the union of
a finite number of balls {Bj}, then one can select a disjoint subcollection B1, . . . , Bm

such that

m(E) ≤ A
m∑
k=1

m(Bk) (1.5)

with A > 0. The choice A = 3d works.

Proof. We extract the desired balls using the following procedure, first let B1 one
of the balls in {Bj} with the largest radius. If there are disjoint balls to B1, select
B2 with the highest radius. Now, if there are balls in {Bj} disjoint to B1 and B2,
select B3 as the one with largest radius. These iterations finish with a subcollection
B1, . . . , Bk, . . . , Bm, ordered by decreasing radius. To distinguish this subcollection
to the original {Bj}, we use the subscript k instead of j.

Define B∗ as a ball with the same center than B but 3 times the radius. We
claim that ∪B∗k ⊇ E. To prove this, it is enough to show that ∪B∗k ⊇ Bj for every
ball in the collection {Bj}. Let Bj one of the balls in {Bj} which is not one of
B1, . . . , Bk, . . . , Bm otherwise the result is trivial. This implies that Bj intersects
one of the balls B1, . . . , Bm say Bj0 , using triangle inequality Bj ⊆ B∗j0 . We conclude
that

m(E) ≤
m∑
k=1

m(B∗k) = 3d
m∑
k=1

m(Bk)
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Proof of Theorem 1.1. Part (i) follows immediately from part (ii) and (iii).

We prove part (ii). Notice that M̃f is lower semi-continuous; let x0 ∈ Rd and

suppose M̃f(x0) < ∞, given ε > 0, there exists an open ball B containing x0

such that 1/m(B)
∫
B
|f(y)|dy > M̃f(x0) − ε. Hence for every x ∈ B, we have

that M̃f(x) > M̃f(x0) − ε. If M̃f(x0) = ∞, let BN a ball containing x0 such
that 1/m(BN)

∫
BN
|f(y)|dy ≥ N . An arbitrary sequence {xn} that converges to

x0 satisfies that M̃f(xn) ≥ N for all n sufficiently large, so M̃f(xn) → ∞. Now,

let α > 0 and define the open set Eα = {x ∈ Rd; M̃f(x) > α}. Fix a compact set
E ⊂ Eα, by lemma 1.2 we can find a finite sequence of disjoint open balls B1, . . . , Bm

contained in Eα and satisfying (1.5). Since these balls are disjoint, we have that

c−1m(E) ≤
m∑
k=1

m(Bk) ≤
1

α

∫
∪mk=1Bk

|f(y)|dy ≤ 1

α
||f ||1 (1.6)

The desired result follows by taking the supremum on left side of (1.6) and the inner
regularity of the Lebesgue measure.

The proof of part (iii) is as follows, notice that the case p = ∞ is trivial with
A∞ = 1. The case 1 < p < ∞ follows from the part (ii), the case p = ∞ and the
Marcinkiewicz Interpolation Theorem 1.3, since the maximal function is a sublinear
operator as we will see in the next section.

1.2 Marcinkiewicz interpolation theorem

Now we turn our attention to an important tool of interpolation, this is what we need
to complete the proof of the Theorem 1.1 part (iii). For the sake of our exposition we
state the theorem first, but the new terminology introduced here will be explained in
detail just before the proof. The proof is based on the one given in [5], we adjusted
the statement to Lebesgue measure, but it still holds for more general measures.

Theorem 1.3 (Marcinkiewicz interpolation theorem). Let p0, p1, q0, q1 ∈ [1,∞] such
that p0 ≤ q0 and p1 ≤ q1, and q0 6= q1. For 0 < t < 1, denote

1

p
=

1− t
p0

+
t

p1

and
1

q
=

1− t
q0

+
t

q1

.

If T is a sublinear operator from Lp0 + Lp1 to the space of measurable functions of
Rd of weak types (p0, q0) and (p1, q1), then T is of strong type (p, q). More precisely,
if there exist positive constants C0 and C1, such that [Tf ]qi ≤ Ci||f ||pi for j = 0, 1.
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As we already said, we need several definitions and some propositions. If f is
a measurable function on Rd, the distribution function λf : (0,∞) → [0,∞] is
defined as

λf (α) = m({x : |f(x)| > α}).
The distribution function has some basic properties:

Proposition 1.4. (i) λf is non-increasing and right continuous.

(ii) If |f | ≤ |g|, then λf ≤ λg.

(iii) If |fn| increases to |f |, then λfn increases to λf .

(iv) If f = g + h, then λf (α) ≤ λg(
α
2
) + λh(

α
2
).

Proof. Part (i) If α ≤ β, we have the inclusion Ef (β) := {x : |f(x)| > β} ⊆
{x : |f(x)| > α} = Ef (α) therefore, by monotonicity of the Lebesgue measure
λf (β) ≤ λf (α). Since the union of nested sets Ef (α) = ∪nEf (α + n−1) holds, the
right continuity follows.

Part (ii) If |f(x)| ≤ |g(x)| ∀x ∈ Rd, then the inclusion Ef (α) ⊂ Eg(α) holds and the
inequality λf (α) ≤ λg(α) is true for any α > 0.

Part (iii) If |fn| increases to |f |, then {Efn(α)} is an increasing nested sequence of
sets and λfn(α) ↑ λf (α).

Part (iv) If |g(x)|+ |h(x)| ≥ |f(x)| > α it follows that |g(x)| > α
2

or |h(x)| > α
2
, and

we obtain the inclusion Ef (α) ⊆ Eg(
α
2
) ∪ Eh(α2 ) which implies the conclusion.

An important application of the distribution function is that we can rewrite the
p-norms in terms of it. If f ∈ Lp(Rd) for 1 ≤ p <∞, by the Fubini’s theorem

||f ||pp =

∫
Rd

∫ |f(x)|

0

pαp−1dα dx

=

∫ ∞
0

∫
|f(x)|>α

pαp−1dx dα = p

∫ ∞
0

αp−1λf (α)dα,

(1.7)

and if p =∞, then
||f ||∞ = inf{α;λf (α) = 0}. (1.8)

Now we give some definitions about weak Lp(Rd) spaces. If f is a measurable
function on Rd and 1 ≤ p <∞, we define

[f ]p =

(
sup
α>0

αpλf (α)

)1/p

,
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and we define weak Lp(Rd) as the collection of measurable functions f for which
[f ]p <∞. We can say more about the weak Lp(Rd) spaces:

• The quantity [·]p is not a norm

• The weak Lp(Rd) spaces are Banach spaces with a topology generated by [·]p.

• The inclusion Lp(Rd) ⊂ weak Lp(Rd) holds.

• The inequality [f ]p ≤ ||f ||p is always true.

Now we describe a way to decompose a measurable function f and prove some
relation of this decomposition with the distribution λf : let A > 0, as before Ef (A) =
{x : |f(x)| > A}, define

hA = fχRd\Ef (A) + (sgn f)AχEf (A), gA = f − hA = (sgn f)(|f | − A)χEf (A),

where χE is the characteristic or the indicator function of the set E and sgn f is the
sign function of f .

Proposition 1.5. If f is a measurable function in Rd, then

λhA(α) =

{
λf (α) if α < A,
0 if α ≥ A.

λgA(α) = λf (α + A).

Proof. Since |hA| ≤ A everywhere for α ≥ A, the set EhA(α) is empty, then λhA(α) =
0. If α < A, the set EhA(α) is equal to the set Ef (α), therefore λhA(α) = λf (α). Let
α > 0, we have Ef (α + A) = {x; |f(x)| > α + A} = {x; (|f(x)| − A)χEf (A) > α} =
EgA(α), therefore λgA(α) = λf (α + A).

Now we define three more concepts related to sublinear operators and its type.
First of all, an operator T defined on a vector space S of measurable functions
defined on Rd over measurable functions on Rd is said to be sublinear if for every
f, g ∈ S, |T (f + g)| ≤ |Tf | + |Tg| and for every positive constant c, the equality
|T (cf)| = c|Tf | holds. Secondly, a sublinear map T is of strong type (p, q) for
1 ≤ p, q ≤ ∞, if T is a bounded operator that maps Lp(Rd) to Lq(Rd) , in other
words, it exists C > 0 such that ||Tf ||q ≤ C||f ||p for all f ∈ Lp(Rd). Finally, we said
that a sublinear operator T is of weak type (p, q) for 1 ≤ p ≤ ∞ and 1 ≤ q < ∞,
if T is a bounded operator that maps Lp(Rd) into weak Lq(Rd), in other words, it
exists C > 0 such that [Tf ]q ≤ C||f ||p for all f ∈ Lp. A sublinear operator T is of
weak type (p,∞) if and only if it is of strong type (p,∞).
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Proof Theorem 1.3. We divide the proof in 3 cases.
First, suppose that p0 = p1 =: p, with no loss of generality, we can assume q0 < q1

(it implies that q0 < q < q1). The inequalities [Tf ]q0 ≤ C0||f ||p and [Tf ]q1 ≤ C1||f ||p
imply

λTf (α) ≤ (C0||f ||p/α)q0 λTf (α) ≤ (C1||f ||p/α)q1 .

Let 0 < σ <∞, we have

||Tf ||qq = q

∫ ∞
0

αq−1λTf (α)dα

≤ q

∫ σ

0

αq−1

(
C0||f ||p

α

)q0
dα + q

∫ ∞
σ

αq−1

(
C1||f ||p

α

)q1
dα

=
q(C0||f ||p)q0σq−q0

|q − q0|
+
q(C1||f ||p)q1σq−q1

|q − q1|
.

(1.9)

For instance, if we choose σ =
(
C
q1
1

C
q0
0

) 1
q1−q0 ||f ||p, we find that

sup{||Tf ||q; ||f ||p = 1}

≤ B :=

(
qCq0

0

|q − q0|

(
Cq1

1

Cq0
0

) q−q0
q1−q0

+
qCq1

1

|q − q1|

(
Cq1

1

Cq0
0

) q−q1
q1−q0

) 1
q

.
(1.10)

Finally, notice that for a real positive number c > 0, the operator satisfies the equality
|T (cf)| = c|Tf |, we conclude that ||Tf ||q ≤ B||f ||p. For the remaining cases, the
idea is to use the decomposition of f that we introduced before the Proposition 1.5,
with a clever choice of A.

Second, suppose without loss of generality p0 < p1 and q0 <∞, q1 <∞, the hy-
pothesis implies that p0 < p1 <∞. Using the formula given by (1.7) and Proposition
1.5, we have that∫

|hA|p1dx = p1

∫ ∞
0

βp1−1λhA(β)dβ = p1

∫ A

0

βp1−1λf (β)dβ,∫
|gA|p0dx = p0

∫ ∞
0

βp0−1λgA(β)dβ = p0

∫ ∞
0

βp0−1λf (β + A)dβ

= p0

∫ ∞
A

(β − A)p0−1λf (β)dβ ≤ p0

∫ ∞
A

βp0−1λf (β)dβ.

(1.11)

Using the sublinearity of the operator T, parts (ii) and (iv) of Proposition 1.4, we
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can estimate the following:∫
|Tf |qdx = q

∫ ∞
0

αq−1λTf (α)dα = 2qq

∫ ∞
0

αq−1λTf (2α)dα

≤ 2qq

∫ ∞
0

αq−1 (λTgA(α) + λThA(α)) dα.

(1.12)

By definition p = p0p1/(p1(1− t) + p0t) and q = q0q1/(q1(1− t) + q0t). Let σ be

σ :=
p0(q0 − q)
q0(p0 − p)

=
1− q

q0

1− p
p0

=
1− q1

q1(1−t)+q0t

1− p1
p1(1−t)+p0t

=
p−1(q−1

1 − q−1
0 )

q−1(p−1
1 − p−1

0 )

=
1− q0

q1(1−t)+q0t

1− p0
p1(1−t)+p0t

=
1− q

q1

1− p
p1

=
p1(q1 − q)
q1(p1 − p)

.

(1.13)

Since (1.11) and (1.12) hold for every choice of A, let A be equal to ασ. Therefore,
we can estimate that the q-norm of Tf as follows

||Tf ||qq ≤ 2qq

∫ ∞
0

αq−1 [([TgA]q0/α)q0 + ([ThA]q1/α)q1 ] dα

≤ 2qq

∫ ∞
0

αq−1 [(C0||gA||p0/α)q0 + (C1||hA||p1/α)q1 ] dα

≤ 2qqCq0
0

∫ ∞
0

αq−q0−1

(
p0

∫ ∞
A

βp0−1λf (β)dβ

)q0/p0
dα

+ 2qqCq1
1

∫ ∞
0

αq−q1−1

(
p1

∫ A

0

βp1−1λf (β)dβ

)q1/p1
dα.

(1.14)

If we denote, χ0 and χ1 the characteristic functions of the sets {(α, β); β > ασ} and
{(α, β); β < ασ} and φj(α, β) = χj(α, β)α(q−qj−1)pj/qjβpj−1λf (β), we can conclude
from (1.14) that

||Tf ||qq ≤
1∑
j=0

2qqC
qj
j p

qj/pj
j

∫ ∞
0

(∫ ∞
0

φj(α, β)dβ

)qj/pj
dα. (1.15)

By the assumptions of this case, 1 ≤ qj/pj < ∞, for j = 0, 1. This allows us to use
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the Minkowski’s inequality and conclude that∫ ∞
0

(∫ ∞
0

φj(α, β) dβ

) qj
pj

dα

≤

(∫ ∞
0

(∫ ∞
0

φj(α, β)
qj
pj dα

) pj
qj

dβ

) qj
pj

.

(1.16)

If q0 < q1, we have that 1
q1
< 1

q
< 1

q0
(and q0 < q < q1), also we assumed p0 < p1, so

p0 < p < p1. Consequently, σ is positive and we have the identities

∫ ∞
0

(∫ ∞
0

φ0(α, β)
q0
p0 dα

) p0
q0

dβ =

∫ ∞
0

(∫ β1/σ

0

αq−q0−1(βp0−1λf (β))
q0
p0 dα

) p0
q0

dβ

=

∫ ∞
0

(∫ β1/σ

0

αq−q0−1dα

) p0
q0

βp0−1λf (β)dβ

=

∫ ∞
0

(
β(q−q0)/σ

q − q0

) p0
q0

βp0−1λf (β)dβ

= (q − q0)
− p0
q0

∫ ∞
0

βp−1λf (β)dβ

= (q − q0)
− p0
q0 p−1||f ||pp,

and∫ ∞
0

(∫ ∞
0

φ1(α, β)
q1
p1 dα

) p1
q1

dβ =

∫ ∞
0

(∫ ∞
β1/σ

αq−q1−1(βp1−1λf (β))
q1
p1 dα

) p1
q1

dβ

=

∫ ∞
0

(
β(q−q1)/σ

q1 − q

) p1
q1

βp1−1λf (β)dβ

= (q1 − q)−
p1
q1 p−1||f ||pp.

If q0 > q1, then we have that 1
q0
< 1

q
< 1

q1
. As before, we can conclude that

∫ ∞
0

(∫ ∞
0

φj(α, β)
qj
pj dα

) pj
qj

dβ = |qj − q|
−
pj
qj p−1||f ||pp.
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Using the above, with (1.15) and (1.16), we prove that

sup{||Tf ||q : ||f || = 1} ≤ B := 2q1/q

(
1∑
j=0

C
qj
j

(
pj
p

)qj/pj
|qj − p|−1

)1/q

. (1.17)

Finally, this implies that ||Tf ||q ≤ B||f ||p.
Third, suppose that q0 = ∞ or q1 = ∞. Here, we may consider three subcases:

1) p1 = q1 = ∞, 2) q0 < q1 = ∞ with p0 < p1 < ∞ and 3) q0 < q1 = ∞ with
p1 < p0 <∞.

1) In the case p1 = q1 = ∞, by assumption p0 ≤ q0 < q1 = ∞, the clever option
of A is α/C1 since the function hA satisfies that

||ThA||∞ ≤ C1||hA||∞ ≤ α

and then λThA(α) = 0. Using (1.12), q0 < q, p0 < p and qp0 = q0p, we have∫
|Tf |qdx ≤ 2qq

∫ ∞
0

αq−1λTgA(α)dα

≤ 2qq

∫ ∞
0

αq−1(C0||gA||p0/α)q0

≤ 2qqCq0
0 p

q0/p0
0

∫ ∞
0

αq−q0−1

(∫ ∞
A

βp0−1λf (β)dβ

)q0/p0
dα

≤ 2qqCq0
0 p

q0/p0
0

(∫ ∞
0

(∫ C1β

0

αq−q0−1(βp0−1λf (β))
q0
p0 dα

) p0
q0

dβ

) q0
p0

= 2qqCq0
0 C

q−q0
1 p

q0/p0
0 |q − q0|−1

(∫ ∞
0

βp0−1λf (β)β
p0(q−q0)

q0 dβ

) q0
p0

= 2qqCq0
0 C

q−q0
1

p0

p

q0/p0
|q − q0|−1||f ||qp.

(1.18)

2) In the case q0 < q1 =∞ with p0 < p1 <∞, we choose A such that λhA(α) = 0
as well. Observe that in this case,

||ThA||p1∞ ≤ Cp1
1 ||hA||p1p1 = Cp1

1 p1

∫ ∞
0

αp1−1λhA(α)dα

= Cp1
1 p1

∫ A

0

αp1−1λf (α)dα ≤ Cp1
1

p1

p
Ap1−pp

∫ A

0

αp−1λf (α)dα

≤ Cp1
1

p1

p
Ap1−p||f ||pp.
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Therefore if we chooseA = (α/d)p1/(p1−p) with d = C1(p1||f ||pp/p)p1 , we have ||ThA||∞ <
α. As before, we have that∫

|Tf |qdx ≤ 2qqCq0
0 p

q0/p0
0

∫ ∞
0

αq−q0−1

(∫ ∞
A

βp0−1λf (β)dβ

)q0/p0
dα

≤ 2qqCq0
0 p

q0/p0
0

∫ ∞
0

∫ dβ
p1−p
p1

0

αq−q0−1(βp0−1λf (β))
q0
p0 dα


p0
q0

dβ


q0
p0

= 2qqCq0
0 p

q0/p0
0

∫ ∞
0

∫ dβ
p1−p
p1

0

αq−q0−1dα


p0
q0

βp0−1λf (β)dβ


q0
p0

= 2qqCq0
0 p

q0/p0
0 dq−q0(q − q0)−1

(∫ ∞
0

β
(
p1−p
p

)(
q−q0
q0

)p0+p0−1
λf (β)dβ

) q0
p0

= 2qqCq0
0 p

q0/p0
0 dq−q0(q − q0)−1||f ||

pq0
p0
p .

(1.19)

Where we use the fact that (p1−p
p1

)( q−q0
q0

)p0 + p0 − 1 = p − 1. This is true since the

limit value of (1.13) when q1 →∞ says that p1
p1−p = p0(q0−q)

q0(p0−p) . We can conclude that

sup{||Tf ||q; ||f ||p = 1} ≤ B := 2
(
qCq0

0 C
p1
1 (p1/p)

p1(q − q0)−1
)1/q

and therefore
||Tf ||q ≤ B||f ||p.

3) In the last case in which q0 < q1 = ∞ with p1 < p0 < ∞, we choose A =

(α/d)p0/(p0−p) with d = C0

(
p0||f ||pp/p

)1/p0 . The reason for this choice is that by (1.11)

||TgA||p0∞ ≤ Cp0
0 ||gA||p0p0

≤ Cp0
0

p0

p
Ap0−pp

∫ ∞
A

βp−1λf (β)dβ

≤ Cp0
0

p0

p
Ap0−p||f ||pp

(1.20)

and this choice of A would imply that λTgA(α) = 0. We omit the rest of the compu-
tations, since these are analogous to the subcase 2).
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Chapter 2

On the regularity of the
Hardy-Littlewood maximal
function

We start the study of the differentiability properties of the maximal function with
the theorem presented in the work [7].

2.1 The Maximal Function of a Sobolev Function

Let us start with some basic definitions of Sobolev spaces. We represent with
W 1,p(Rd) for 1 ≤ p ≤ ∞ the functions in f ∈ Lp(Rd) whose weak partial derivatives
Dif belong to Lp(Rd) for i = 1, . . . , d. We consider W 1,p(Rd) a normed vector space
with ||f ||1,p = (||f ||pp +

∑
i ||Dif ||pp)1/p. The idea is to study whether or not the map

f 7→ Mf is bounded from W 1,p(Rd) to W 1,p(Rd). By the comments after Theorem
1.1, we know that the maximal function of an integrable function is never integrable,
we have that this is false for p = 1.

Theorem 2.1 (Kinnunen [7]). Let 1 < p < ∞. If f ∈ W 1,p(Rd), then Mf ∈
W 1,p(Rd) and

|DiMf | ≤MDif, i = 1, . . . , d, (2.1)

almost everywhere in Rd.

An important remark is that (2.1) says that if f ∈ W 1,p(Rd) for 1 < p <∞,

||Mf ||1,p ≤ Ap||f ||1,p, (2.2)

where Ap is the constant of the Theorem 1.1 part iii).
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Proof. Let f ∈ W 1,p(Rd). Observe that if we denote χr(x) =
χB(x,r)

m(B(x,r))
we can rewrite

the maximal function as
Mf(x) = sup

r>0
|f | ∗ χr(x). (2.3)

Also, for every r > 0, |f | ∗ χr ∈ W 1,p(Rd) and Di(|f | ∗ χr) = χr ∗Di|f |, i = 1, . . . , d.
This happens since |f | ∈ W 1,p(Rd), in fact

Di|f |(x) =


Dif if f > 0,
0 if f = 0,
−Dif if f < 0

(2.4)

(see Lemma 7.5 in [6]) and∫
Rd

(|f | ∗ χr)(x)φ′(x)dx =

∫
Rd

∫
Rd
|f(y − x)|χ(y)dy φ′(x) dx

=

∫
Rd

∫
Rd
|f(y − x)|φ′(x) dxχ(y) dy

=

∫
Rd

∫
Rd
Di|f(y − x)|φ(x) dxχ(y) dy

=

∫
Rd
Di|f | ∗ χ(x)φ(x) dx,

for every differentiable function φ ∈ C∞c (Rd). By Young’s inequality and (2.4),
||Di(|f | ∗ χr)||p ≤ ||Di|f |||p = ||Dif ||p.

We can restrict the supremum of the definition of the maximal function in (2.3)
to positive rationals. The reason is that as a function of r,

|f | ∗ χr(x) =
1

m(B(x, r))

∫
B(x,r)

|f(y)|dy

is the product of two continuous functions. The Lebesgue measure is continuous and
f is locally integrable. Now, let {rn} be any enumeration of the positive rational
numbers, and define

gm(x) := max
1≤n≤m

|f | ∗ χrn(x). (2.5)

Clearly gm is a nondecreasing sequence of functions, in the sense gm1(x) ≤ gm2(x)
for any m1,m2 ∈ N, m1 ≤ m2 and for any x ∈ Rd and

||gm||p ≤ ||Mf ||p. (2.6)

14



We prove that gm(x) → Mf(x) as m → ∞ for almost every x ∈ Rd. Suppose that
Mf(x) <∞ and fix ε > 0, there exists a rational rN such that

Mf(x)− ε < |f | ∗ χrN (x),

we can conclude that

|Mf(x)− gm(x)| = Mf(x)− gm(x) < ε (2.7)

for every m ≥ N . Finally, by Theorem 1.1 part i), m{x;Mf(x) = ∞} = 0. In
conclusion, this pointwise convergence holds up to a set of measure zero of Rd.

Now notice that for any pair of functions g, h, from the equality

max{g(x), h(x)} =
1

2
(g(x) + h(x) + |g(x)− h(x)|)

and (2.4) we can show that {gm} is a sequence of functions in W 1,p(Rd). In addition,
we can also observe that for every m ≥ 1

|Digm(x)| ≤ max
1≤n≤m

Di(|f | ∗ χrn)(x)

= max
1≤n≤m

χrn ∗Di|f |(x)

≤MDi|f |(x) = MDif(x),

(2.8)

for i = 1, . . . , d and almost every x ∈ Rd. Therefore

||Digm||p ≤ ||MDif ||p ≤ Ap||Dif ||p (2.9)

using Theorem 1.1 part iii). The inequalities (2.6) and (2.9) imply that for m =
1, 2, . . .

||gm||1,p = ||gm||p +
d∑
i=1

||Digm||p

≤ Ap

(
||f ||p +

d∑
i=1

||Dif ||p

)
= Ap||f ||1,p <∞.

(2.10)

Hence, {gm} is a bounded sequence in W 1,p(Rd) which converges pointwise to Mf
almost everywhere. The space W 1,p(Rd) is reflexive for 1 < p < ∞ and the weak
compactness of W 1,p(Rd) implies that there exists a subsequence denoted by {gm}
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as well, that converges weakly to some g ∈ W 1,p(Rd). We prove that Mf = g almost
everywhere. Let φ ∈ C∞c (Rd) be a smooth function of compact support, then∣∣∣∣∫ (g −Mf)φdx

∣∣∣∣ ≤ ∣∣∣∣∫ (g − gm)φdx

∣∣∣∣+

∣∣∣∣∫ (gm −Mf)φdx

∣∣∣∣
≤
∣∣∣∣∫ (g − gm)φdx

∣∣∣∣+ ||gm −Mf ||p||φ||p′ =: Im + Jm

(2.11)

for every m = 1, 2, . . . . On one hand gm converges weakly to g, hence Im → 0. On the
other hand, Jm → 0 using the Dominated Convergence Theorem. This implies that∫

(g −Mf)φdx = 0. Since φ is arbitrary, it follows that Mf = g almost everywhere
in Rd and therefore Mf ∈ W 1,p(Rd). This also implies that Digm converges weakly
in Lp(Rd) to DiMf because, for every φ ∈ C∞c (Rd)

∫
DiMfφdx = −

∫
MfDiφdx

= − lim
m→∞

∫
gmDiφdx = lim

m→∞

∫
Digmφdx.

(2.12)

This weak convergence also implies that for every i = 1, . . . , d

|DiMf | ≤MDif (2.13)

almost everywhere in Rd. Suppose that this is not true, and B = {x; |DiMf | >
MDif} has positive measure for some i; for our purpose we can assume it has
finite measure. The characteristic function χB belongs to Lq (with q such that
q−1 + p−1 = 1). Hence,

lim
m→∞

∫
|Digm|χBdx =

∫
|DiMf |χBdx >

∫
MDifχBdx

which is impossible since (2.8) implies
∫
|DiMf |χBdx ≤

∫
MDifχBdx.

There is another way to prove the last part of this theorem. Certainly, Digm con-
verges weakly in Lp(Rd) to DiMf , Mazur’s corollary (See for instance [2], Corollary
3.8) tell us that there exists a sequence made up of convex combinations of {Digm}
which converges to DiMf in norm Lp(Rd). Consequently, a subsequence of these
convex combinations converges pointwise almost everywhere to DiMf , we are done
because this subsequence is dominated by MDif by inequality (2.8).
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The previous theorem also holds for p = ∞, the proof is very simple using a
characterizations of Sobolev spaces given in Proposition 9.3 of [2]. Let f ∈ W 1,∞,
h ∈ Rd and denote τh(Mf)(x) := Mf(x+ h). Hence

||τh(Mf)−Mf ||∞ ≤ ||M(τhf − f)||∞ ≤ ||τhf − f ||∞ ≤ C|h|

where we have used the sublinearity of the maximal function and part iii) of Theorem
1.1.

2.2 Application: capacity and quasicontinuity

In [7], the author noticed that Theorem 2.1 implies immediately a weak type of
inequality for the Sobolev capacity. First, let us define the Sobolev p-capacity of
a set E ⊂ Rd as

Cp(E) = inf
f∈A(E)

∫
Rd
|f |p +

d∑
i=1

|Dif |pdx

where A(E) is a collection of functions

A(E) = {f ∈ W 1,p(Rd); f ≥ 1 on a neighboorhood of E}.

If this class of functions is empty for a set E, the p-capacity is defined as ∞. Also,
functions onA(E) are called admissible functions for E. We mention some interesting
properties:

• The Sobolev p-capacity is an outer measure: it is monotone and countably
subadditive.

• It is outer regular: Cp(E) = inf{Cp(U);E ⊂ U, U is open}.

• The inequality m(E) ≤ Cp(E) always holds.

For more properties see references in [7].

Let f ∈ W 1,p(Rd), and let λ be a positive number. Denote

Eλ = {x;Mf(x) > λ}.
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By Theorem 2.1 the function Mf/λ ∈ W 1,p(Rd) is admissible for the set Eλ. The
inequality (2.13) implies that

Cp(Eλ) ≤
1

λp

∫
Rd
|Mf |p +

d∑
i=1

|DiMf |pdx

≤ 1

λp

∫
Rd
|Mf |p +

d∑
i=1

(MDif)pdx

≤
App
λp

(
||f ||pp +

d∑
i=1

||Dif ||pp

)

=
App||f ||

p
1,p

λp
.

(2.14)

We will say that a property holds p-quasieverywhere if it is true, except on a
set of Sobolev p-capacity zero. It is an analogous property to the Lebesgue almost
everywhere. Now, a function f is p-quasicontinuous in Rd if for every ε > 0 there
is a set F such that Cp(F ) < ε and f is continuous and finite in the complement of
F .

There are some properties of p-quasicontinuity that are very useful, for a proof
see the references in [7].

• For each f ∈ W 1,p(Rd) there is a p-quasicontinuous representative. This means
that exists a p-quasicontinuous function f̃ ∈ W 1,p(Rd) with f = f̃ almost
everywhere.

• If f, g ∈ W 1,p(Rd) are p-quasicontinuous functions and f = g almost every-
where, then f = g p-quasieverywhere.

• The p-quasicontinuous representative of a Sobolev function is unique in the
sense considered above.

Theorem 2.2. If f ∈ W 1,p(Rd), 1 < p <∞, then Mf is p-quasicontinuous.

Proof. First, we prove that Mf ∈ C(Rd) ∩ Lp(Rd) if f ∈ C(Rd) ∩ Lp(Rd). Let
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x, h ∈ Rd and ε > 0, then there exists rε > 0 such that

1

m(B(x, r))

∫
B(x,r)

|(τhf)(y)− f(y)| dy

≤
(

1

m(B(x, r))

∫
B(x,r)

|(τhf)(y)− f(y)|p dy
)1/p

≤ ||τhf − f ||p
m(B(x, r))p

≤ 2||f ||p
m(B(x, r))p

< ε,

for every r ≥ rε. Notice that we have used the Young’s inequality in the first
inequality. If r < rε, there exist δ > 0 such that

1

m(B(x, r))

∫
B(x,r)

|(τhf)(y)− f(y)| dy ≤ sup
B(x,rε)

|τhf − f | < ε

for every |h| < δ. We deduce that

|τh(Mf)(x)−Mf(x)| ≤M(τhf − f)(x) ≤ ε

for every |h| < δ. Then Mf ∈ C(Rd), the Theorem 1.1 proves that Mf ∈ Lp(Rd).

Let f ∈ W 1,p(Rd) and a sequence of functions {ϕi} with each ϕi ∈ C∞0 (Rd) and
ϕi → f in W 1,p(Rd). By the weak inequality (2.14) there is a set F of capacity
zero, Cp(F ) = 0 and Mf is finite in the complement Rd\F . Denote again {ϕi} a
subsequence, such that

||ϕi − f ||p1,p ≤ (4iAp)
−p.

This implies that on the set Ei = {x ∈ Rd\F ; M(φi − f)(x) > 2−i}, for i = 1, 2, . . . .
Using one more time the weak inequality (2.14) we have

Cp(Ei) ≤ 2ipApp||ϕi − f ||
p
1,p ≤ 2−ip.

Using the subadditivity property of the p-capacity, for

Fj = ∪i≥jEi

we have that
Cp(Fj) ≤

∑
i≥j

2−ip <∞.
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This proves that Cp(Fj)→ 0 as j →∞. The convergence Mϕi →Mf is uniform in
Rd\Fj due to

|Mϕi(x)−Mf(x)| ≤M(ϕi − f)(x) ≤ 2−i

for every x ∈ Rd\Fj and i ≥ j. As the uniform limit of continuous functions is
continuous, Mf is continuous in Rd\Fj. We are done if we let F = ∩j≥1Fj in the
definition of p-quasicontinuity.
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Chapter 3

The regularity at p = 1

Despite the fact that M does not map W 1,1(Rd) to itself since Mf is not even
in L1(Rd), Tanaka’s Theorem [12] gives an interesting alternative that we want to

present. Tanaka proved that if f ∈ W 1,1(R), the DM̃f ∈ L1(R) and ||DM̃f ||1 ≤
c||Df ||1 for c = 2. This inequality is an analog to the result of Kinnunen, observe
that (2.1) and Theorem 1.1 part iii) implies ||DMf ||p ≤ Ap||Df ||p for 1 < p <∞.

3.1 Tanaka’s theorem

As Tanaka remarks in his paper [12], Theorem 2.1 can be also proved for the non-
centered maximal operator. Instead of (2.5), we can take the sequence

gm(x) = max
1≤n≤m
x∈Bn

|f | ∗ χBm(x), (3.1)

where χ is the indicator function of the ball Bm normalized by the Lebesgue measure.
The collection {Bm} is an enumeration of balls centered in a countable dense subset
of Rd and positive rational radius.

Theorem 3.1 (Tanaka [12]). If f ∈ W 1,1(R), then M̃f has a weak derivative and it
is an integrable function. Moreover,

||(M̃f)′||1 ≤ 2||f ′||1.

We prove some propositions before going to the proof of the Theorem 3.1.

Proposition 3.2. Let f ∈ W 1,1(R), then M̃f is bounded.
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Proof. Without loss of generality, we can assume f is absolutely continuous function,
see Theorem 8.2 in [2]. Since it is differentiable with derivative f ′ in L1(R), f must
be bounded.

|f(x)| ≤ |f(0)|+
∫ x

0

|f ′(y)|dy ≤ |f(0)|+ ||f ′||1 ≤ c <∞.

By Theorem 1.1 part iii) the conclusion follows, since M̃f(x) ≤ c.

Definition. For a locally integrable function f on R, define the one-sided maximal
operator functions Mlf and Mrf by

Mlf(x) = sup
s>0

1

s

∫ x

x−s
|f(y)|dy,

Mrf(x) = sup
t>0

1

t

∫ x+t

x

|f(y)|dy.

Proposition 3.3. Let f ∈ L1
loc(R). Then

M̃f(x) = max {Mlf(x),Mrf(x)} .

Proof. On one hand, we have the inequalities

M̃f(x) ≥Mlf(x) and M̃f(x) ≥Mrf(x).

It implies M̃f(x) ≥ max{Mlf(x),Mrf(x)}. On the other hand for s, t > 0,

1

s+ t

∫ s+t

x−s
|f(y)|dy =

s

s+ t

1

s

∫ x

x−s
|f(y)|dy +

t

s+ t

1

t

∫ x+t

x

|f(y)|dy

≤ s

s+ t
Mlf(x) +

t

s+ t
Mrf(x)

≤ max{Mlf(x),Mrf(x)},

which implies M̃f(x) ≤ max{Mlf(x),Mrf(x)}.

Proposition 3.4. Let f ∈ W 1,1(R). Then Ml(f) and Mr(f) are continuous and
vanishes at infinity.
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Proof. It is enough to prove the result for Mr(f) since the same reasoning can be
applied to Ml(f). If f ∈ W 1,1(R), we can assume it to be continuous, and therefore
uniformly continuous, see Theorem 8.2 in [2]. Let x, h ∈ R and ε > 0, there is rε > 0
such that

1

r

∫ x+r

x

|fh(y)− f(y)|dy ≤ 2||f ||1
r

< ε

if r ≥ rε. Since f is uniformly continuous, for 0 < r ≤ rε, there exists δ > 0 such
that |f(y1)− f(y2)| < rε if |f(y1)− f(y2)| < δ. Then

1

r

∫ x+r

x

|fh(y)− f(y)|dy < ε, for |h| < δ.

This implies that Mr(fh − f)(x) ≤ ε for |h| < δ and

|(τh(Mrf)(x)−Mrf(x)| ≤Mr(τhf − f)(x) ≤ ε.

In conclusion Mrf is continuous.
We will prove that Mrf(x) → 0 if x → −∞. Proving that Mrf(x) → 0 if

x → +∞ require minor modifications to our argument. Let ε > 0, since ||f ||1 < ∞
there exists Rε > 0 such that ||f ||1

t
< ε

2
if t ≥ Rε. Since f vanishes at infinity, there

exists Qε > 0 such that |f(y)| < ε
2

if |y| ≥ Qε. Consider x < −(Qε +Rε), there exist
t > 0 such that

Mrf(x)− ε

2
<

1

t

∫ x+t

x

|f(y)|dy.

We have to consider the following two cases

Case (i) x + t ≤ −Qε. We have that x ≤ y ≤ x + t, and therefore on this interval
|y| ≥ Qε, this implies that Mrf(x) < ε.

Case (ii) x + t > −Qε. We have chosen −x > Qε + Rε then t > −Qε − x > Rε.
Therefore,

1

t

∫ x+t

x

|f(y)|dy < ||f ||1
t

<
ε

2

and also Mrf(x) < ε.

Proposition 3.4 has two relevant consequences for the proof of the Theorem 3.1
as we will see. First, combining with Proposition 3.3, M̃f is continuous. Second, the
set

E = {x ∈ R;Mlf(x) > |f(x)|}
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is open and so E can be written as countably union of disjoint intervals, say

E = ∪jIj = ∪j(αj, βj).

Lemma 3.5. Using the notation above, the following facts hold

(i) Mlf is a non-increasing function on each Ij.

(ii) Mlf is a locally Lipschitz function on each Ij. In particular, Mlf is an abso-
lutely continuous function on each compact subinterval of Ij.

Proof. Part (i). Let K = [α, β] ⊂ Ij. It suffices to prove that Mlf is nonincreasing
on K. We know that Mlf(x)−f(x) > 0 on K and the continuity of Mlf−|f | implies

ε := min
x∈K

Mlf(x)− |f(x)| > 0. (3.2)

By the uniform continuity of |f | on R there exists δ > 0 such that

|f(y)| < |f(x)|+ ε

2
for all x ∈ K, |y − x| ≤ δ. (3.3)

The definition of ε and (3.3) imply that

Mlf(x) = sup
s>δ

1

s

∫ x

x−s
|f(y)|dy, for all x ∈ K. (3.4)

For if Mlf(x) = sups≤δ
1
s

∫ x
x−s |f(y)|dy for some x ∈ K then using (3.3) we deduce

that Mlf(x) ≤ |f(x)| + ε
2

and then a contradiction to the definition of ε. We will
prove that

Mlf(x− h) ≥Mlf(x) for x− h, x ∈ K, 0 < h ≤ δ. (3.5)

Suppose that s > δ, x and h as in (3.5). By the above, we have the following

1

s

∫ x

x−s
|f(y)|dy =

s− h
s

{
1

s− h

∫ x−h

x−s
|f(y)|dy

}
+
h

s

{
1

h

∫ x

x−h
|f(y)|dy

}
≤ s− h

s
Mlf(x− h) +

h

s

{
|f(x)|+ ε

2

}
≤ max

{
Mlf(x− h), |f(x)|+ ε

2

}
.

From the above and (3.4), we deduce that

Mlf(x) ≤ max
{
Mlf(x− h), |f(x)|+ ε

2

}
.
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Since the definition of ε implies that Mlf(x) > |f(x)|+ ε we have (3.5).

Part (ii). Let K as in part (i) and δ such that (3.3) holds. Now suppose that
x, x+ h ∈ K, h > 0, and s > δ. From part (i)

1

s

∫ x

x−s
|f(y)|dy −Mlf(x+ h) ≤ 1

s

∫ x

x−s
|f(y)|dy − 1

s+ h

∫ x+h

x−s
|f(y)|dy

≤ 1

s

∫ x

x−s
|f(y)|dy − 1

s+ h

∫ x

x−s
|f(y)|dy

=
h

s+ h

1

s

∫ x

x−s
|f(y)|dy ≤ Mlf(x)

δ
h

≤ Mlf(α)

δ
h.

Now, taking the supremum on the left side of above when s > δ, we obtain

0 ≤Mlf(x)−Mlf(x+ h) ≤ Ch.

Proposition 3.6. If f ∈ W 1,1(R), then Mlf and Mrf are weakly differentiable and
the weak derivatives are integrable functions. Moreover,

||(Mlf)′||1 ≤ ||f ′||1, ||(Mrf)′||1 ≤ ||f ′||1.

Proof. We prove the result only for Mlf since it is analogous for Mrf . We can write

|f |′ =


f ′ if f > 0,
0 if f = 0,

−f ′ if f < 0

almost everywhere in R, therefore, |||f |′||1 = ||f ′||1. Observe that on every (αj, βj) ⊂
E, Mlf is differentiable almost everywhere by Lemma 3.5, let us denote v such
function which satisfies v ≤ 0 on E. On the set F := R\E, by continuity Mlf = |f |,
and so we prove that

(Mlf)′ = χEv + χF |f |′. (3.6)

Let φ ∈ C∞c (R), we will prove that:∫
Ij

Mlf(y)φ′(y)dy = |f(βj)|φ(βj)− |f(αj)|φ(αj)−
∫
Ij

v(y)φ(y)dy. (3.7)
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It is possible that αj = −∞ or βj =∞, but we know that f vanishes at infinity and
Proposition 3.4 holds, so we let Ml(αj) = Ml(βj) = 0 and f(αj) = f(βj) = 0. Using
Lebesgue dominated theorem∫ βj

αj

Mlf(y)φ′(y)dy = lim
h→0

∫ βj

αj

Mlf(y)φ(y + h)−Mlf(y)φ(y)

h
dy

= lim
h→0

1

h

{∫ βj+h

αj+h

Mlf(y − h)φ(y)dy −
∫ βj

αj

Mlf(y)φ(y)dy

}

= lim
h→0

1

h

{∫ βj+h

βj

Mlf(y − h)φ(y)dy −
∫ αj+h

αj

Mlf(y − h)φ(y)dy

}

− lim
h→0

∫ βj

αj

{Mlf(y − h)−Mlf(y)}φ(y)

−h
dy

= Mf(βj)φ(βj)− |M(αj)|φ(αj)−
∫
Ij

v(y).

Equation (3.7) follows, since Mf(αj) = |f(αj)| and Mf(βj) = |f(βj)|. Using (3.7),
we can deduce ∫

R
Mlf(y)φ′(y)dy =

∫
E

Mlf(y)φ′(y)dy +

∫
F

Mlf(y)φ′(y)dy

=
∑
j

|f(βj)|φ(βj)− |f(αj)|φ(αj)−
∫
E

v(y)φ(y)dy +

∫
F

Mlf(y)φ′(y)dy

=

∫
E

{|f(y)|φ(y)}′ dy −
∫
E

v(y)φ(y)dy +

∫
F

|f(y)|φ′(y)dy

=

∫
E

|f(y)|′φ(y)dy −
∫
E

v(y)φ(y)dy +

∫
R
|f(y)|φ′(y)dy

=

∫
E

|f(y)|′φ(y)dy −
∫
E

v(y)φ(y)dy −
∫
R
|f(y)|′φ(y)dy

= −
∫
F

|f(y)|′φ(y)dy −
∫
E

v(y)φ(y)dy

= −
∫
R

(χE(y)v(y) + χF (y)|f |′(y))φ(y)dy,

which proves (3.6).
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On each interval Ij the weak derivative v is non-positive, so we have∫
Ij

|v(y)|dy = Mlf(αj)−Mlf(βj) = |f(αj)| − |f(βj)|

= −
∫
Ij

|f(y)|′dy ≤
∫
Ij

||f(y)|′| dy.

We obtain the result since

||(Mlf)′||1 =

∫
R
|χE(y)v(y) + χF (y)|f |′(y)|dy

=

∫
E

|v(y)|dy +

∫
F

||f |′(y)|dy

≤
∫
E

||f(y)|′| dy +

∫
F

||f |′(y)|dy

= ||f ′||1.

Lemma 3.7. Let f and g be integrable functions and set F (x) =
∫ x
−∞ f(y)dy, G(x) =∫ x

−∞ g(y)dy and H(x) = max{F (x), G(x)}. Then the weak derivative of H is an
integrable function, and

||H ′||1 ≤ ||f ||1 + ||g||1

Proof. The result follows from the equation

max{F (x), G(x)} =
1

2
{F (x) +G(x) + |F (x)−G(x)|}

and the chain rule for weak derivatives.

Proof theorem 3.1. Combining Proposition 3.3, Lemma 3.7 and Proposition 3.6 we
obtain that Mf has an integrable weak derivative and ||(Mf)′||1 ≤ ||(Mlf)′||1 +
||(Mrf)′||1 ≤ 2||f ′||1.
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Chapter 4

Discrete analogues of the maximal
function

What we have reviewed in the precedent chapters can be also translated in a discrete
setting. For simplicity, we will only present the one dimensional case on the discrete
maximal operator.

We will present in this chapter two theorems of the work [1]. The first shows

that for a function of bounded variation f , the non-centered maximal function M̃f
has also bounded variation and Var(M̃f) ≤ Var(f) and the second theorem states
that for a function in `1, the centered maximal function Mf has bounded variation
controlled by f as Var(Mf) ≤ c||f ||`1 . We use the ideas in [8] to show that c = 2 is
the lowest positive number that can be used in this inequality. Formally, we want to
show, for the non-centered maximal function, the following theorem.

Theorem 4.1. Let f : Z→ R be a function of bounded variation. Then

Var(M̃f) ≤ Var(f),

and the inequality is sharp.

While for the centered maximal function, we want to show the following

Theorem 4.2. Let f : Z→ R be a function in `1(Z). Then

Var(Mf) ≤ 2||f ||`1(Z),

and the inequality is sharp.
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4.1 The discrete one-dimensional setting

Let f : Z → R a discrete function and let Z+ = {0, 1, . . . }. The discrete centered
Hardy-Littlewood maximal function is defined by

Mf(n) = sup
r∈Z+

1

2r + 1

k=r∑
k=−r

|f(n+ k)| ,

while the non-centered version is defined by

M̃f(n) = sup
r,s∈Z+

1

s+ r + 1

k=s∑
k=−r

|f(n+ k)| .

We establish the following conventions. For 1 ≤ p <∞, the `p-norm of a function
f : Z→ R is

||f ||`p(Z) =

(
∞∑

n=−∞

|f(n)|p
)1/p

,

and `∞-norm
||f ||`∞(Z) = sup

n∈Z
|f(n)|.

Consequently, the space `p(Z) consists of the functions f defined on Z with values
on R such that ||f ||`p(Z) <∞.

We define the derivatives of a discrete function by

f ′(n) = f(n+ 1)− f(n),

f ′′(n) = f(n+ 2)− 2f(n+ 1) + f(n),

f ′′′(n) = f(n+ 3)− 3f(n+ 2) + 3f(n+ 1)− f(n)

and so on. If f ∈ `p(Z), it is possible to check that for any k ≥ 1,

||f (k)||`p(Z) ≤ 2k||f ||`p(Z)

using the Binomial theorem and Jensen’s inequality. This means that the analogous
Sobolev spaces wk,p(Z) are again the spaces `p.

Let f : Z→ R. The total variation of f is given by

Var(f) = ||f ′||`1(Z) =
∞∑

n=−∞

|f(n+ 1)− f(n)|.
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Example 4.1. Consider the function

f(n) =

{
1 if n = 0,
0 otherwise.

Notice that

f ′(n) =


−1 if n = 0,

1 if n = −1,
0 otherwise.

and so Var(f) = 2. Now observe that for s, r ∈ Z+,

1

r + s+ 1

k=s∑
k=−r

|f(n+ k)| =
{

1
r+s+1

if n− r ≤ 0 ≤ n+ s,

0 otherwise.

A short analysis says that both the non-center and center maximal operators attain
its value and

Mf(n) =
1

2|n|+ 1
,

M̃f(n) =
1

|n|+ 1
.

It is easy to check that Var(Mf) = Var(M̃f) = 2. This example motivates the
following:

Proposition 4.3. Let f : Z → R. If f ∈ `1(Z), then the centered (non-centered)
maximal operator attains its value.

Proof. The idea of the proof is based on the fact that f(n)→ 0 when |n| → ∞. Let
n ∈ Z, we want to proof Mf(n) = 1

2r+1

∑k=r
k=−r |f(n+ k)| for some r ∈ Z+. Because

of translations, we can assume n = 0. Fixed ε > 0 there exists N ∈ Z+ such that
|f(n)| < ε for |n| > N . For every m > N , the average can be decomposed as

1

2m+ 1

k=m∑
k=−m

|f(k)| ≤ 1

2m+ 1

k=N∑
k=−N

|f(k)|+ ε
2(m−N)

2m+ 1
,

we notice that the averages goes to zero as m→ 0. Clearly, there must exists r ∈ Z+

for which 1
2r+1

∑k=r
k=−r |f(k)| equals Mf(0). A similar analysis proves that result for

the non-centered maximal operator.

30



4.1.1 On the non-centered discrete maximal function

We will say that a point n is a local maximum of f if

f(n− 1) ≤ f(n) and f(n+ 1) < f(n)

and similarly, we will say that a point n is a local minimum of f if

f(n− 1) ≥ f(n) and f(n+ 1) > f(n).

Lemma 4.4. Let f : Z→ R be a bounded function. If n is a local maximum of M̃f ,
then M̃f(n) = |f(n)|.

Proof. Without loss of generality, we can assume that f is non-negative. We prove
this lemma by contradiction, we let n to be a local maximum and M̃f(n) > f(n)

Case 1. If M̃f(n) is equal to the average on the interval [n − r, n + s] for some
r, s ∈ Z+. This interval cannot be degenerated by assumption, so it may contain
n+ 1 or n− 1. In the former, we have the inequality

M̃f(n) =
1

r + s+ 1

k=s∑
k=−r

f(n+ k) =
1

r + s+ 1

k=s−1∑
k=−r−1

f(n+ 1 + k) ≤ M̃f(n+ 1)

which is a contradiction. In the later, if the interval does not contain n+ 1, we must
have s = 0. Taking an average on [n− r, n− 1] for n− 1 we have

M̃f(n− 1) ≥ 1

r

k=0∑
k=−r+1

f(n− 1− k) =
1

r

k=−1∑
k=−r

f(n− k)

and then
M̃f(n) ≤ (r + 1)M̃f(n)− rM̃f(n− 1) ≤ f(n)

Case 2. If M̃f(n) is not attained for any r, s ∈ Z+. In such case, we can prove that

M̃f(m) ≥ M̃f(n) for every m ∈ Z, therefore, n cannot be a local maximum. Let
c > 0, such that ||f ||`∞ = c. Fix m ∈ Z with m > n (the case m < n is similar).
Given ε > 0, there exists r, s > 0 sufficiently large such that

1

r + s+ 1

{
k=s∑
k=−r

f(n+ k)

}
≥ M̃f(n)− ε.
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Now, consider the average of length r + s+ 1 for m:

M̃f(m) ≥ 1

r + s+ 1

{
k=s∑
k=−r

f(m+ k)

}

=
1

r + s+ 1

{
k=s∑
k=−r

f(n+ k)

}

+
1

r + s+ 1

{
k=m−n+s∑
k=m−n−r

f(n+ k)−
k=s∑
k=−r

f(n+ k)

}

≥
(
M̃f(n)− ε

)
− 2c|m− n|
r + s+ 1

.

Now we are ready to prove the first theorem of this chapter.

Proof of Theorem 4.1. Notice that the equality is attained in Example 4.1, this
proves the the constant C = 1 is the best possible for an inequality of the form
Var(M̃f) ≤ C Var(f). If f has bounded variation, we have

|f(n)| ≤ |f(0)|+ |f(n)− f(0)| ≤ |f(0)|+ Var(f) <∞

and therefore f is bounded. Without loss of generality, we can assume that f is
non-negative since Var(|f |) ≤ Var(f). Observe that to study the variation of M̃f ,
we can consider only its values on the critical points. Even more, we can reduce the
analysis of it to and alternating sequence of local maxima {ai}i∈Z and local minima
{bi}i∈Z,

· · · < b−2 < a−2 < b−1 < a−1 < b0 < a0 < b1 < a1 < b2 < a2 < . . . (4.1)

We choose this sequence in a way that the second equality in (4.2) holds. The

sequence (4.1) can be infinite or finite depending the behavior of M̃f asymptotically.
Therefore, consider the following two cases.
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Case 1. If the sequence (4.1) is infinite in both sides, using the Lemma 4.4 we have

Var(M̃f) =
n=∞∑
n=−∞

|M̃f(n+ 1)− M̃f(n)|

=
i=∞∑
i=−∞

(M̃f(ai−1)− M̃f(bi)) + (M̃f(ai)− M̃f(bi))

=
i=∞∑
i=−∞

(f(ai−1)− M̃f(bi)) + (f(ai)− M̃f(bi))

≤
i=∞∑
i=−∞

(f(ai−1)− f(bi)) + (f(ai)− f(bi))

≤ Var(f).

(4.2)

Case 2. If the sequence (4.1) is finite in one or both sides, the cases can be treated in
the same way using (4.2) with few modifications. Observe that if last critical point

ak is a local maximum, the sequence M̃f(n) becomes non-increasing, and since it is
bounded, the limit of the tail exists, say

lim
n→∞

M̃f(n) = c

and then
lim inf
n→∞

f(n) ≤ c.

Denote the local variation as

Var(f)[a,b] =
b−1∑
n=a

|f(n+ 1)− f(n)|

for a, b ∈ Z, possibly ±∞. Therefore using Lemma 4.4 we have,

Var(M̃f) = Var(M̃f)[−∞,ak] + Var(M̃f)[ak,+∞]

=
i=k∑
i=−∞

(M̃f(ai−1)− M̃f(bi)) + (M̃f(ai)− M̃f(bi)) + (M̃f(ak)− c)

=
i=k∑
i=−∞

(f(ai−1)− f(bi)) + (f(ai)− f(bi)) + (f(ak)− c)

≤ Var(f)[−∞,ak] + Var(f)[ak,+∞] = Var(f).

The other cases are treated with minor differences.
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4.1.2 On the centered discrete maximal function

The authors in [1, 8] have studied an analogous result for Theorem 4.1, this is not
an easy task, however, they considered f ∈ `1 which is an stronger condition.

Proof of Theorem 4.2. Using Example 4.1 the equality is attained. By Proposition
4.3, we know that for all n ∈ Z there is an rn ∈ Z+, such that

Mf(n) = Arnf(n) :=
1

2rn + 1

k=rn∑
k=−rn

|f(n+ k)|.

Define the sets

X− = {n ∈ Z;Mf(n) ≥Mf(n+ 1)}

and
X+ = {n ∈ Z;Mf(n) < Mf(n+ 1)}.

Consequently

Var(Mf) =
∑
n∈X−

Mf(n)−Mf(n+ 1) +
∑
n∈X+

Mf(n+ 1)−Mf(n)

≤
∑
n∈X−

Arnf(n)− Arn+1f(n+ 1)

+
∑
n∈X+

Arn+1f(n+ 1)− Arn+1+1f(n).

(4.3)

The idea of the proof consist in estimating the contribution to (4.3) of the term
corresponding to f(m) for any given m ∈ Z. Without lost of generality, we can
assume that f is non-negative.

Case 1. If n ∈ X− and n ≥ m. In this case, the term corresponding to f(m) in

Arnf(n) − Arn+1f(n + 1) is 0 if m < n − rn or f(m)
2rn+1

− f(m)
2rn+3

if n − rn ≤ m, in the
last case we have

f(m)

2rn + 1
− f(m)

2rn + 3
=

2f(m)

(2rn + 1)(2rn + 3)

≤ 2f(m)

(2(n−m) + 1)(2(n−m) + 3)

=
f(m)

2(n−m) + 1
− f(m)

2(n−m) + 3
.
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Case 2. If n ∈ X+ and n ≥ m. In this case, the term corresponding to f(m) in

Arn+1f(n+ 1)−Arn+1+1f(n) is non-positive if m < n− rn+1 + 1 or f(m)
2rn+1+1

− f(m)
2rn+1+3

if m ≥ n− rn+1 + 1, in the last case we have

f(m)

2rn+1 + 1
− f(m)

2rn+1 + 3
=

2f(m)

(2rn+1 + 1)(2rn+1 + 3)

≤ 2f(m)

(2(n−m+ 1) + 1)(2(n−m+ 1) + 3)

=
f(m)

2(n−m+ 1) + 1
− f(m)

2(n−m+ 1) + 3

<
f(m)

2(n−m) + 1
− f(m)

2(n−m) + 3
.

Case 3. If n ∈ X− and n < m. In this case, the term corresponding to f(m) in

Arnf(n)−Arn+1f(n+ 1) is non-positive if m > n+ rn or f(m)
2rn+1

− f(m)
2rn+3

if m ≤ n+ rn,
in the last case we have

f(m)

2rn + 1
− f(m)

2rn + 3
=

2f(m)

(2rn + 1)(2rn + 3)

≤ 2f(m)

(2(m− n) + 1)(2(m− n) + 3)

=
f(m)

2(m− n) + 1
− f(m)

2(m− n) + 3

<
f(m)

2(m− n− 1) + 1
− f(m)

2(m− n− 1) + 3
.

Case 4. If n ∈ X+ and n < m. In this case, the term corresponding to f(m)

in Arn+1f(n + 1) − Arn+1+1f(n) is 0 if m > n + rn+1 + 1 or f(m)
2rn+1+1

− f(m)
2rn+1+3

if
m ≤ n+ rn+1 + 1, in the last case we have

f(m)

2rn+1 + 1
− f(m)

2rn+1 + 3
=

2f(m)

(2rn+1 + 1)(2rn+1 + 3)

≤ 2f(m)

(2(m− n− 1) + 1)(2(m− n− 1) + 3)

=
f(m)

2(m− n− 1) + 1
− f(m)

2(m− n− 1) + 3
.
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This implies that the terms corresponding to f(m) in (4.3) are bounded by the
expression∑

n≥m

f(m)

2(n−m) + 1
− f(m)

2(n−m) + 3

+
∑
n<m

f(m)

2(m− n− 1) + 1
− f(m)

2(m− n− 1) + 3
= 2f(m).

In conclusion, we have proved the theorem since

Var(Mf) ≤
m=∞∑
m=−∞

2f(m) = 2||f ||`1(Z).
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Chapter 5

Maximal operators of convolution
type

In this chapter, we will introduce two maximal operators, the heat maximal operator
and the Poisson maximal operator. The reason for their names will appear soon after
their definitions. This part of the report is based on the paper [4].

Our purpose is to present some results on these maximal operators defined by
convolution. In the paper [4], the authors address the question of whether these
maximal operators can decrease the variation (or Lp-variation) of a function, also if
this variation is bounded with respect to that of the initial data. In other words, the
results in this paper shows under what hypothesis we can prove that:

• For p ≥ 1 and a function f ∈ W 1,p(Rd), the maximal function of f , denoted
by Mϕf belongs to W 1,p(Rd) and the inequality

||DMϕf ||p ≤ C||Df ||p

holds for C = 1.

• For f ∈ BV (R), then Mϕf ∈ BV (R) and the inequality

Var(Mϕf) ≤ C Var(f)

holds for C = 1.

To clarify, given a function ϕ ∈ L1(Rd), such that
∫
Rd ϕ = 1, we let the approx-

imation of identity to be ϕt(x) = t−dϕ(x/t). The maximal operator Mϕf is defined
as

Mϕf(x) = sup
t>0

(|f | ∗ ϕt)(x).
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Note that this definition coincides with the Hardy-Littlewood maximal function when
we use the indicator function ϕ(x) = χB(0,1)/m(B(0, 1)).

An important comment is that the Theorem 2, Chapter III in [10] give us the
pointwise inequality

Mϕf(x) ≤ AMf(x) (5.1)

for A > 0. This implies that the operator Mϕ is of weak type (1, 1) and strong type
(p, p) for 1 < p ≤ ∞. Now, repeating the arguments in Theorem 2.1, we can prove
that for p > 1,

||DMϕf ||p ≤ C ||Df ||p (5.2)

for a constant C > 1. Hence, using the inequalities (5.1) and (5.2), Mϕ : W 1,p(Rd)→
W 1,p(Rd) is a bounded operator.

For the sake of our discussion, first we give some definitions and announce the
theorems of [4] and finally we give their proofs.

5.1 Poisson maximal operator

Given f0 ∈ Lp(Rd), with 1 ≤ p ≤ ∞ and the Poisson kernel given by

Py(x) =
cd y

(|x|2 + y2)
d+1
2

with cd =
Γ
(
d+1

2

)
π
d+1
2

,

the Poisson maximal operator is given by

f ?(x) = sup
y>0

(|f0| ∗ Py)(x). (5.3)

As in the heat maximal operator, the Poisson maximal operator is motivated by
the solution to the Laplace’s equation

∆f = 0 in R × (0,∞),

with boundary condition
lim
y→0+

f(x, y) = f0(x).

The solution to this problem is given by

f(x, y) = (f0 ∗ Py)(x). (5.4)

We prove the following theorem, which is analogous to the Theorem 5.2.
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Theorem 5.1. Let f ? be the Poisson maximal function in (5.3). The following
propositions are true.

(i) Let 1 < p ≤ ∞ and f0 ∈ W 1,p(R). Then f ? ∈ W 1,p(R) and

||(f ?)′||p ≤ ||f ′0||p.

(ii) Let f0 ∈ W 1,1(R). Then f ? ∈ L∞(R) and has a weak derivative (f ?)′ that
satisfies

||(f ?)′||1 ≤ ||f ′0||1.

(iii) Let f0 : R → R be a function of bounded variation. Then f ? is a function of
bounded variation and

Var(f ?) ≤ Var(f0).

(iv) Let d > 1 and f0 ∈ W 1,p(Rd), with p = 2 or p =∞. Then f ? ∈ W 1,p(Rd) and

||D(f ?)||p ≤ ||Df0||p.

5.2 Heat flow maximal operator

Given f0 ∈ Lp(Rd), with 1 ≤ p ≤ ∞ and the Gauss kernel or heat kernel given by

Kt(x) =
1

(4πt)d/2
e−|x|

2/t,

the heat flow maximal operator is given by

f ∗(x) = sup
t>0

(|f0| ∗Kt)(x). (5.5)

An important motivation to consider this maximal operator is that the function
f : Rd × (0,∞)→ R defined as

f(x, t) = (f0 ∗Kt)(x)

solves the heat equation

∂tf + ∆xf = 0, in Rd × (0,∞)

with boundary condition

lim
t→0∗

f(x, t) = f0(x), almost everywhere x ∈ Rd.

We prove the following theorem about this maximal operator.

39



Theorem 5.2. Let f ∗ be the heat flow maximal function in (5.5). The following
propositions are true.

(i) Let 1 < p ≤ ∞ and f0 ∈ W 1,p(R). Then f ∗ ∈ W 1,p(R) and

||(f ∗)′||p ≤ ||f ′0||p.

(ii) Let f0 ∈ W 1,1(R). Then f ∗ ∈ L∞ and has a weak derivative (f ∗)′ that satisfies

||(f ∗)′||1 ≤ ||f ′0||1.

(iii) Let f0 ∈ BV(R) be a function of bounded variation. Then f ∗ ∈ BV(R) and

Var(f ∗) ≤ Var(f0).

(iv) Let d > 1 and f0 ∈ W 1,p(Rd), with p = 2 or p =∞. Then f ∗ ∈ W 1,p(Rd) and

||D(f ∗)||p ≤ ||Df0||p.

5.3 The regularity of Poisson maximal function:

Proof of Theorem 5.1

Our aim is to prove the Theorem 5.1, for simplicity, we first assume that the initial
condition f0 is non negative. On one hand, if f0 ∈ W 1,p(Rd), from (2.4), we know
that |f0| ∈ W 1,p(Rd), and ||D|f0|||p = ||Df0||p for d ≥ 1 and 1 ≤ p ≤ ∞. On the
other hand, it is well known that Var(|f0|) ≤ Var(f0) if f0 is a function of bounded
variation.

Also, it would be useful to have in mind some properties of the Poisson kernel,
see for instance section 2 chapter III in [10].

Lemma 5.3. The following statements are true

(i) If f0 ∈ C(Rd) ∩ Lp(Rd) for 1 ≤ p <∞, then f ? ∈ C(Rd).

(ii) If f0 is bounded and Lipschitz continuous, then f ? is bounded and Lipschitz
continuous with Lip(f ?) ≤ Lip(f0).
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Proof. (i) Let ε > 0. Given any h ∈ Rd and some 0 < yε <∞, we have

|(τhf0 − f0) ∗ Py(x)| ≤
(
|τhf0 − f0|p ∗ P p

y (x)
)1/p

≤
(
||τhf0 − f0||pp ||Py||p∞

)1/p

= ||τhf0 − f0||p ||Py||∞

≤ cd||τhf0 − f0||p
yd

< ε

(5.6)

if y ≥ yε. We have used Jensen’s inequality in the first line and Young’s inequality
in the second, see Theorem 4.15 in [2]. When y ≤ yε, we can split the convolution
in two integrals and using p′ as the conjugate exponent of p we have

|(τhf0 − f0) ∗ Py(x)| ≤ |(τhf0 − f0)| ∗ Py(x)

=

∫
|z|≤ yε

2

|(τhf0 − f0)(z − x)|Py(z)dz +

∫
|z|≥ yε

2

|(τhf0 − f0)(z − x)|Py(z)dz

≤ max
z∈B(x, yε

2
)
|(τhf0 − f0)(z)|

∫
|z|≤ yε

2

Py(z)dz + ||τhf0 − f0||p||χ{|x|≥ yε
2
}Py||p′

≤ max
|z|≤ yε

2

|(τhf0 − f0)(z)|+ ||τhf0 − f0||p||χ{|x|≥ yε2 }Py||p′ .

From the inequality above, we can say the following

• The norm
∣∣∣∣∣∣χ{|x|≥ yε2 }Py∣∣∣∣∣∣p′ is bounded for 0 < y < yε. If p′ < ∞, using polar

coordinates ∣∣∣∣∣∣χ{|x|≥ yε2 }Py∣∣∣∣∣∣p′p′ =

∫ ∞
yε
2

(
cd

y

(r2 + y2)
d+1
2

)p′

rd−1dr

≤ (cdyε)
p′
∫ ∞
yε
2

r(d−1)−p′(d+1)dr

<∞.

The last inequality follows from the fact 1 < p′ and this implies that the
exponent satisfies d− p′(d+ 1) < −1. Also, if p′ =∞, being Py(x) decreasing

on |x|, we have
∣∣∣∣∣∣χ{|x|≥ yε2 }Py∣∣∣∣∣∣∞ ≤ cd2d+1

ydε
.

• The norm ||τhf0 − f0||p goes to zero as |h| → 0, by approximation with a
function in C∞c (Rd) and Corollary 4.23 in [2].
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• The value max|z|≤ yε
2

goes to zero as |h| → 0.

Summarizing, there exists δ > 0 such that, if |h| < δ, then

|(τhf0 − f0) ∗ Py(x)| < ε. (5.7)

Using the sublinearity of the Poisson maximal operator, the inequalities (5.6) and
(5.6), we can conclude that

|τhf ?(x)− f ?(x)| ≤ ε, (5.8)

for |h| ≤ δ, in other words, f ? ∈ C(Rd).

(ii) If f0 is bounded, say by M , the convolution f0 ∗ Py is also bounded by M
and so the pointwise supremum is also bounded. Regarding to Lipschitz continuity,
the idea is the same. If f0 has Lipschitz constant L, the convolution is also Lipschitz
conitinuous and together with sublinearity of the Poisson maximal operator, we can
conclude that f ? is also Lipschitz continuos with Lipschitz constant at most L.

As in previous chapters, we move to the analysis of the open set where the Poisson
maximal function is above the initial data. In this set, we see that the subharmonicity
of f ? is a property inherited from the Poisson kernel. Therefore, we will introduce
a new definition. We say that a continuous function f is subharmonic in an open
set A, if for every x ∈ A and r > 0 such that B(x, r) ⊂ A we have

f(x) ≤ 1

rd−1σd−1

∫
∂B(x,r)

f(y)dHd−1(y). (5.9)

We use σd−1 to denote the surface area of the unit ball and Hd−1 to denote the Haus-
dorff measure of dimension d− 1. The expression B(x, r) represents the topological
closure of the ball with center x and radius r, while ∂B(x, r) represents its boundary.

Lemma 5.4 (Subharmonicity property). Let f0 ∈ C(Rd)∩Lp(Rd) for some 1 ≤ p <
∞ or f0 be bounded and Lipschitz continuous. Then f ? is subharmonic in the open
set A = {x ∈ Rd; f ?(x) > f0(x)}.

Proof. The set A is open since the Lemma 5.3 says that f ? is continuous, so f ?− f0

is a continuous function. We will denote B((x, y), r) for an open ball in Rd+1 whose
center is (x, y) with x ∈ Rd, y ∈ R and radius r > 0.

If A is an empty set, there is nothing to prove. Therefore, fix x0 ∈ A. Remember
that f(x, y) is the solution to the Laplace’s equation with initial condition f0 defined
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in (5.4), we have that f0(x0) < f ?(x0), and limy→0+ f(x0, y) = f0(x0). Next, let δ > 0
such that for every y < δ then

f(x0, y) < f ?(x0)− 1

2
(f ?(x0)− f0(x0)). (5.10)

Let y0 ≥ δ. Choose a radius 0 < r0 < δ such that B(x0, r0) ⊂ A. For any r < r0

we have that B((x0, y0), r) ⊂ A × (0,∞), because it is true that B((x0, y0), r) ⊂
B(x0, r) × (y0 − r, y0 + r) and y0 − r > y0 − r0 > 0. Since Py(x) is harmonic for
(x, y) ∈ Rd × (0,∞), f(x, y) is also harmonic there, and by the mean value average
property

f(x0, y0) =
1

rd+1ωd+1

∫
B((x0,y0),r)

f(x, y) dx dy (5.11)

with ωd+1 denoting the volume of the unit sphere of dimension d + 1. From the
average (5.11) we have

f(x0, y0) ≤ 1

rd+1ωd+1

∫
B((x0,y0),r)

f ?(x) dx dy

=
1

rd+1ωd+1

∫
B(x0,r)

2
√
r2 − |x− x0|2f ?(x) dx.

(5.12)

The estimation of the Poisson solution we have in inequality (5.10) implies that
sup0<y<δ f(x0, y) < f ?(x0). This says that for every x0 ∈ A,

f ?(x0) = sup
y≥δ

f(x0, y). (5.13)

Since we have obtained the inequality (5.12) for arbitrary y0 ≥ δ, together with
(5.13) we have that for every r < r0

f ?(x0) ≤ 1

rd+1ωd+1

∫
B(x0,r)

2
√
r2 − |x− x0|2f ?(x) dx. (5.14)

The next step is to show that the average (5.14) implies the subharmonicity of
f ? in A. First, we show that this implies the maximum principle on each connected
component of A. As the standard proof, let Ω a connected component of A such
that Ω ⊂ A. Denote M = supΩ f

? and define B1 = {x ∈ Ω; f ? < M} and B2 =
{x ∈ Ω; f ? = M}. We prove B2 is open. Take z0 ∈ B2, since f ? is continuous, take
r sufficiently small such that B(z0, r) ⊂ Ω

M = f(z0) ≤ 1

rd+1ωd+1

∫
B(z0,r)

2
√
r2 − |x− x0|2f ?(x) dx ≤M
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This is enough to show that B(z0, r) ⊂ B2 and then B2 = Ω.
Now, let x0 ∈ A and s > 0 such that B(x0, s) ⊂ A and let h : B(x0, s) → R the

solution of the Dirichlet problem{
∆h = 0 on B(x0, s),
h = f ? in ∂B(x0, s).

Denote by g the difference f ?−h; now we prove it satisfies the same type of average
that in (5.14), but on the ball B(x0, s). Observe that for z0 and r > 0 such that
B(z0, r) ⊂ B(x0, s)

g(z0) = f ?(z0)− h(z0)

≤ 1

rd+1ωd+1

∫
B(z0,r)

2
√
r2 − |x− x0|2f ?(x) dx− h(z0)

=
1

rd+1ωd+1

∫
B(z0,r)

2
√
r2 − |x− x0|2 (f ?(x)− h(x)) dx

=
1

rd+1ωd+1

∫
B(z0,r)

2
√
r2 − |x− x0|2g(x) dx.

(5.15)

The third line is true since h(x) is also harmonic in the ball B((z0, 0), r) and it
satisfies the mean average formula. In addition, the inequality (5.15) implies the
maximum principle in B(x0, s). Therefore, the maximum value of g must be attained
in ∂B(x0, s), but g = 0 in this boundary, hence f ?(x0) − h(x0) ≤ 0. Using the
harmonicity of h and that it equals f ? in ∂B(x0, s) we have that

f ?(x0) ≤ h(x0) =
1

rd−1σd−1

∫
∂B(x0,s)

h(y)dHd−1(y)

=
1

rd−1σd−1

∫
∂B(x0,s)

f ?(y)dHd−1(y).

(5.16)

In conclusion, the inequality (5.16) means that f ? is subharmonic in A.

The following lemma is an important reduction of the assumptions we can make, it
is based on the fact that the Poisson kernel satisfies the semigroup property Py1∗Py2 =

Py1+y2 . This is verified using the Fourier transform P̂y(x) = e−2π|x|y and the Fourier
inversion formula of Proposition 5 Chapter III in [10].

Lemma 5.5 (Reduction to Lipschitz continuity). We can assume without loss of
generality, that f0 is Lipschitz continuous in part (i) and (iv) of Theorem 5.1.
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Proof. If p = ∞, there is a relation between Lipschitz functions and Sobolev func-
tions. It is true that f0 ∈ W 1,p(Rd) if and only if f0 has a representative that is
bounded and Lipschitz continuous.

If 1 < p <∞, we take ε > 0 and define

fε(x) := f0 ∗ Pε(x).

We observe that fε is Lispchitz continuous since is differentiable and the derivative
is bounded using the Young’s inequality. Now assume the statements of the theorem
are true for fε, which means, for f ?ε (x) = supy>0 fε ∗ Py(x) = supy>ε f0 ∗ Py(x), it is
true that f ?ε ∈ W 1,p((R)d) and

||Df ?ε ||p ≤ ||Dfε||p. (5.17)

On one hand, the Young’s inequality implies that ||fε||p ≤ ||f0||p||Py||1 = ||f0||p. On
the other hand, the Minkowski’s inequality implies that for every 1 ≤ i ≤ d,∫

Rd
(Difε(x))p dx =

∫
Rd

(∫
Rd

(Dif0)(x− z)Pε(z) dz

)p
dx

≤

(∫
Rd

(∫
Rd
{(Dif0)(x− z)Pε(z)}p dx

)1/p

dz

)p

= ||Dif0||pp,

which implies that ||Dfε||p ≤ ||Df0||p. The inequality (5.17) and the observations
above prove that the sequence {Df ?ε } is bounded in Lp(Rd) by Df0. Also, we have
that f ?ε converges pointwise to f ? as ε → 0. This is enough to argue that {f ?ε } is a
bounded sequence in W 1,p(Rd). Together with the weak compactness of W 1,p(Rd),
as in the proof of the Theorem 2.2, we can conclude that f ? ∈ W 1,p(Rd). Finally, by
Fatou’s lemma we can prove that

||Df ?||p ≤ lim inf
ε→0

||Df ?||p ≤ lim inf
ε→0

||Dfε|| ≤ ||Df0||p.

The following lemma is useful to prove the part (iv).

Lemma 5.6. Let f, g ∈ C(Rd)∩W 1,2(Rd) with g Lipschitz continuous and nonneg-
ative, let f be subharmonic on the open set J = {x ∈ Rd; g(x) > 0}. Then∫

Rd
〈Df,Dg〉 dx ≤ 0
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Proof. We will prove the result for g with compact support. The reason to this
simplification is as follows. Let ψ ∈ C∞c (Rd) be a nonnegative function such that
0 ≤ ψ(x) ≤ 1, with support contained in the ball B(0, 2) and ψ(x) = 1 for every
x ∈ B(0, 1). We denote ψn(x) := ψ(x/n) and the functions with compact support
gn(x) := g(x)ψn(x). We have that gn → g in W 1,2(Rd) since the convergence gn(x)→
g(x) and Dψn(x) = n−1Dψ(n−1x)→ 0 are pointwise and Dgn is uniformly bounded
because g is bounded and Lipschitz continuous. Also, we have the set equality

J = ∪∞n=1{x ∈ Rd; gn(x) > 0}.

Summarizing, each gn is Lipschitz continuous and f is subharmonic on the sets
{x ∈ Rd; gn(x) > 0}, hence∫

Rd
〈Df,Dg〉 dx = lim

n→∞

∫
Rd
〈Df,Dgn〉 dx ≤ 0.

The equality above follows from the fact that

lim
n→∞

∫
Rd
〈Df,Dg −Dgn〉 dx ≤ ||Df ||2 lim

n→∞
||Dg −Dgn||2 = 0.

Let φ ∈ C∞c (Rd) be a nonnegative function with support onB(0, 1) and
∫
Rd φ dx =

1. For ε > 0, define the approximation of identity φε(x) := ε−dφ(ε−1x) and let fε
be the convolution f ∗ φε. We see that fε is subharmonic on the set Jε = {x ∈
Rd; dist(x, ∂J)}. For x ∈ Jε and r > 0 such that B(x, r) ⊂ Jε, we have

fε(x) =

∫
Rd
f(x− y)φε(y) dy

≤
∫
Rd

1

rd−1σd−1

∫
∂B(0,r)

f(x− y + z)dHd−1(z)φε(y) dy

=
1

rd−1σd−1

∫
∂B(0,r)

fε(x+ z) dHd−1(z).

(5.18)

In addition, the Laplacian ∆fε is nonnegative on Jε since fε ∈ C∞(Rd) and satisfies
(5.18).

By standard argument of approximations to g with smooth functions of compact
support, we can prove that the formula of integration by parts holds, this gives us∫

Rd
〈Dfε, Dg〉 dx =

∫
Rd

(−∆fε)g dx

≤
∫
J\Jε

(−∆fε)g dx
(5.19)
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due to the product (−∆fε)g is nonpositive on Jε.

Let x ∈ J\Jε and y ∈ ∂J , since g is Lipschitz continuous,

|g(x)| = |g(x)− g(y)| ≤ Lip(g)|x− y| ≤ Lip(g)ε.

This implies that∫
J\Jε
|(−∆fε)g| dx ≤ Lip(g)ε

∫
J\Jε
|∆fε| dx

= Lip(g) ε

∫
J\Jε

d∑
i=1

|Dif ∗ ε−1(Diφ)ε)| dx

≤ Lip(g)

∫
J\Jε
|Df | ∗ (|Dφ|)ε dx

≤ Lip(g) |||Df | ∗ (|Dφ|)ε||2(m(J\Jε))1/2

≤ Lip(g) ||Df ||2||Dφ||1(m(J\Jε))1/2

(5.20)

using Cauchy-Schwarz inequality to get rid of the summation and then again to
reduce our expression to L2-norm and finally Young’s inequality. From inequalities
(5.19) and (5.20), we finally prove that∫

Rd
〈Df,Dg〉 dx = lim

ε→0

∫
Rd
〈Dfε, Dg〉 dx

≤ lim
ε→0

C(m(J\Jε))1/2 = 0

based on the fact that the set J is bounded.

5.3.1 Proof of part (iv) - Theorem 5.1

For p =∞, we know that f0 ∈ W 1,∞(Rd) can be considered Lipschitz by the Lemma
5.5. Now, from Lemma 5.3, f ? is also bounded and Lispchitz continuous, which
means that f ? ∈ W 1,∞(Rd) with ||Df ?||∞ = Lip(f ?) ≤ Lip(f0) = ||Df0||∞.

For p = 2, using Lemma 5.5 we assume that f0 ∈ W 1,2(Rd) is Lipschitz, and therefore
f ? is also Lispchitz by Lemma 5.3. By the comments after the inequalities (5.1) and
(5.2), we know that f ? ∈ W 1,2(Rd). By the Lemma 5.4, on the set {x ∈ Rd; f ?(x) >
f0(x)}, f ? is subharmonic. We let f = f ? and g = f ? − f0 in Lemma 5.6, then
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∫
Rd〈Df

?, D(f ? − f0)〉 dx ≤ 0. Now, the inequality

||Df ?||22 =

∫
Rd
|Df ?|2 dx

≤
∫
Rd
|Df ?|2 dx− 2

∫
Rd
〈Df ?, D(f ? − f0)〉 dx+

∫
Rd
|D(f ? − f0)|2 dx

=

∫
Rd
|Df ? −D(f ? − f0)|2 dx

= ||Df0||22
implies the result we want.

5.3.2 Proof of part (i) - Theorem 5.1

We can focus on the case 1 < p <∞ since the case p =∞ was already proved above
without regarding the dimension. As before, we can assume that f0 is Lipschitz
continuous by the Lemma 5.5 and then also f ? is Lipschitz continuous by the Lemma
5.3 and subharmonic in the open set A := {x ∈ R; f ?(x) > f0(x)} by the Lemma
5.4.

We can write the set A as the countable union of disjoint sets A = ∪jIj =
∪j(αj, βj), and being f ? subharmonic on A, it must be a continuous convex function
in each (αj, βj).

Now we will use the Zorn’s lemma to find an important function in W 1,p(R).
Define the family of functions as

S :=


h : R→ R,
f0(x) ≤ h(x) ≤ f ?(x) for all x ∈ R,
Lip(h) ≤ Lip(f0),
||h′||p ≤ ||f ′0||p.

 .

The family S is non-empty since it contains f0. We will add a partial order and
prove it is inductive, as consequence of the Zorn’s lemma it has a maximal element
denoted by g. We will consider that h1 � h2 if and only if h1(x) ≤ h2(x) for all
x ∈ R. This partial order makes the family S inductive, for a totally order subset
{hα}α∈Λ, we can prove that the pointwise supremum

h̄(x) = sup
α∈Λ

hα(x)

is an upper bound and h̄ ∈ S. First of all, since a pointwise supremum of Lipschitz
continuous function is Lipschitz continuous, h̄ is Lipschitz continuous and Lip(h̄) ≤
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Lip(f0). For each N ∈ N, we can consider the partition of [−N,N ] given by the
2N2 + 1 points {j/N}, with −N2 ≤ j ≤ N2. For every element of the partition j/N
and for every N , choose hj,N ∈ {hα}α∈Λ such that

h̄(j/N)− hj,N(j/N) < 1/N.

With these choices we can construct the sequence {hN}N∈N as

hN(x) = max
−N2≤j≤N2

hj,N(x).

We have the pointwise convergence hN → h̄. The sequence hN is pointwise increasing
with respect to N , and for every ε > 0 and x ∈ R, there exists N � 1 such that
x ∈ [−N,N ] and

h̄(x)− hN(x)

= [h̄(x)− h̄(j/N)] + [h̄(j/N)− hN(j/N)] + [hN(j/N)− hN(x)]

≤ Lip(h̄)|x− j/N |+ 1/N + Lip(f0)|x− j/N |
≤ 1/N + Lip(f0)/N

< ε,

(5.21)

where −N2 ≤ j ≤ N2 is chosen to satisfy |x − j/N | ≤ 1/(2N). By construction
we have that the sequence {hN} is bounded in W 1,p(R), to be precise ||hN ||1,p ≤
||f ?||p + ||f ′0||p < ∞. The weak compactness of the Sobolev spaces implies that hN
converges weakly to h̄ ∈ W 1,p(R). By Fatou’s lemma

||h̄′||p ≤ lim inf
N→∞

||h′N ||p ≤ ||f ′0||p,

which implies that h̄ ∈ S. We conclude the verification of the inductive property,
and then we can guarantee the existence of an element g ∈ S which is maximal.

The next step is to show that this especial element g coincides with f ?. Suppose
by contradiction that the open set B = {x ∈ R; f ?(x) > g(x)} ⊂ A is non-empty.
We can write B as a countable union of disjoint intervals ∪jJj = ∪j(γj, δj).

The point is that g cannot be superharmonic in B. If it is and one of the intervals
(γj, δj) is bounded, the maximal principle implies that f ? equals g on [γj, δj]; notice
that f ?(γj) = g(γj) and f ?(δj) = g(δj) and the difference f ? − g is subharmonic in
B. The maximal property implies f ?−g ≤ 0 on (γj, δj) since the equality is satisfied
in the boundary. If an interval Jj is unbounded, say (γj,∞) (similarly (−∞, δj)),
the function f ? − g is strictly positive and convex, but this is not possible. On one
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hand, (f ? − g)(γj) = 0. On the other, f ? − g is Lipschitz continuous and belongs to
Lp(R), therefore limx→+∞(f ? − g)(x) = 0. This implies that f ? = g on (γj,∞). The
case B = R cannot happen, because f0 coincide with f ?, in a point x0, where attains
its global maximum. This can be explained by the inequality

f0(x0) ≤ g(x0) ≤ f ?(x0) ≤Mf(x0) = f(x0).

The discussion above guarantees that we can find a closed interval [a, b] ⊂ B such
that

g

(
a+ b

2

)
<
g(a) + g(b)

2
.

Let `(x) the parametrization of the segment that connect the points (a, g(a)) and
(b, g(b)) given by

`(x) =
g(b)− g(a)

b− a
(x− a) + g(a).

We denote f̃ ?(x) := f ?(x)− `(x) and g̃(x) := g(x)− `(x). Denote y0 where g̃ attains
the minimum value on [a, b]. We prove that on a closed subinterval containing y0,

there exists an horizontal line ˜̀ such that the graph of f̃ ? is above and the graph of
g̃ is below. Notice that g̃(y0) is negative since

g̃(y0) ≤ g̃

(
a+ b

2

)
<
g(a) + g(b)

2
− `(a+ b

2
) = 0.

Since y0 ∈ A, it follows that f̃ ?(y0) − g̃(y0) = f ?(y0) − g(y0) =: C > 0. For each
−g̃(y0) > ε > 0 let

aε := max{a ≤ x ≤ y0; g̃(x) ≥ g̃(y0) + ε}

and
bε := min{y0 ≤ x ≤ b; g̃(x) ≥ g̃(y0) + ε}.

This definitions imply that for every x ∈ [aε, bε], it holds g̃(x) ≤ g̃(y0) + ε, with
g̃(aε) = g̃(bε) = g̃(y0) + ε, and is strict in the interior. Now, we can find the desired
horizontal line. Suppose that for every ε > 0 we can find zε ∈ [aε, bε], such that

f̃ ?(zε) < g̃(y0)+ε. From the collection {zε}ε>0, there is a subsequence that converges

to some z0 ∈ [a, b] and f̃ ?(z0) ≤ g̃(y0) ≤ g̃(z0) < f̃ ?(z0) which is a contradiction.
Therefore, there exists an ε > 0 such that

f̃ ?(x) ≥ g̃(y0) + ε

50



for every x ∈ [aε, bε]. Now, observe that,

f ?(x) ≥ `(x) + g̃(y0) + ε ≥ g(x), (5.22)

for every x ∈ [aε, bε] and the line `(x) + g̃(y0) + ε connects the points (aε, g(aε)) and
(bε, g(bε)) and the line is strictly above g in (aε, bε).

Now define the sliced function

u(x) =

{
g(x), if x 6∈ [aε, bε],
g(bε)−g(aε)
bε−aε (x− aε) + g(aε), if x ∈ [aε, bε].

The idea is to show that u ∈ S, u � g and u is strictly bigger in (aε, bε). The
inequality (5.22) proves that f ? � u � f0 and Lip(u) ≤ Lip(g) ≤ Lip(f0). It remains
to prove that ||u′||p ≤ ||f ′0||p, but this follows from the fact that Young’s inequality
implies that

||g′||pp =

∫
R\[aε,bε]

|g′(x)|p dx+

∫ bε

aε

|g′(x)|p dx

≥
∫
R\[aε,bε]

|g′(x)|p dx+ (bε − aε)
(

1

bε − aε

∫ bε

aε

|g′(x)| dx
)p

≥
∫
R\[aε,bε]

|g′(x)|p dx+ (bε − aε)
∣∣∣∣ 1

bε − aε

∫ bε

aε

g′(x) dx

∣∣∣∣p
=

∫
R\[aε,bε]

|g′(x)|p dx+ (bε − aε)
∣∣∣∣g(bε)− g(aε)

bε − aε

∣∣∣∣p
= ||u′||pp.

This proves that u is an element in S and is strictly bigger than g, but this a
contradiction since g is the maximal element in S. In conclusion g = f ?.

5.3.3 Proof of part (ii) - Theorem 5.1

The proof is as follows. We can assume f0 ∈ W 1,1(R) to be absolutely continuous.
By Lemmas 5.3 and 5.4, f ? is continuous in R and subharmonic in the open set
A = {x ∈ R; f ?(x) > f0(x)}. As before we can regard A as a countable union of
disjoint intervals ∪jIj = ∪j(αj, βj). Since f ? is convex on every Ij, it is Lipschitz
on every compact subinterval of A. This implies that f ? is differentiable almost
everywhere on each Ij, lets denote this derivative on A as v.

Now, we prove that on each Ij, the variation of f ? is no greater than that of f0.
Since the function f ? is convex on Ij, it reaches a minimum, say γj ∈ [αj, βj]. We do
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not discard unbounded intervals. If αj = −∞, f0(αj) = 0 since f0 ∈ W 1,1(R), and
f ?(αj) ≤ Mf(αj) = 0, see Propositions 3.3 and 3.4. Similarly f0(βj) = f ?(βj) = 0,
if βj = +∞. Hence, we have that f ? is monotone on the subintervals [αj, γj] and
[γj, βj] and integrating |v| on Ij∫

Ij

|v(x)| dx = −
∫ γj

αj

v(x) dx+

∫ βj

γj

v(x) dx

= (f ?(αj)− f ?(γj)) + (f ?(βj)− f ?(γj))
≤ (f0(αj)− f0(γj)) + (f0(βj)− f0(γj))

≤
∫ γj

αj

|f ′0(x)| dx+

∫ βj

γj

|f ′0(x)| dx

=

∫
Ij

|f ′0(x)| dx,

where we used the fact that f ? and f0 coincides in the extremes of Ij and f0(γj) ≤
f ?(γj). This implies the inequality∫

A

|v(x)| dx ≤
∫
A

|f ′0(x)| dx. (5.23)

It follows as in equation (3.6) that f ? is weakly differentiable and

(f ?)′ = χR\Af
′
0 + χAv. (5.24)

The key point is that as in equation (3.7), it follows that for every φ ∈ C∞c (R)∫
Ij

f ?(x)φ′(x) dx = [f0(βj)φ(βj)− f0(αj)φ(αj)]−
∫
Ij

v(x)φ(x) dx.

We can conclude that

||(f ?)′||1 =

∫
R
|(f ?)′(x)| dx

=

∫
R\A
|(f0)′(x)| dx+

∫
A

v(x) dx

≤
∫
R\A
|(f0)′(x)| dx+

∫
A

|f ′0(x)| dx

= ||(f0)′||1,

(5.25)

using in the first line the equation (5.24) and the inequality (5.23) in the last line.
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5.3.4 Proof of part (iii) - Theorem 5.1

Remember that we want to prove that if f0 is a function of bounded variation, then
f ? has bounded variation and this is not larger than that of f0. We can consider Df0

as the weak derivative, being of bounded variation, it is a Radon measure with total
variation |Df0|. This satisfies |Df0| ≤ Var(f0).

For ε > 0, we can consider one more time

fε(x) := f0 ∗ Pε(x).

Because of the convolution, fε belongs to C∞(R) and is also Lipschitz continuous.
This also means that the total variation |Dfε| and the variation Var(fε) coincides.
Again, we define

f ?ε (x) = sup
y>0

fε ∗ Py(x) = sup
y>ε

f0 ∗ Py(x)

by the semigroup property of the Poisson kernel. From Lemma 5.4 we have that f ?ε
is subharmonic in the open set A = {x ∈ R; f ?ε (x) > fε}. As usual we represent
this set as the countable disjoint union ∪jIj = ∪j(αj, βj). On each Ij, we have
that f ?ε is convex, so it is monotone on the pieces [αj, γj] and [γj, βj], where f ?ε
attains its minimum in γj. We consider an arbitrary partition P = {x1, . . . , xN}
with x1 < x2 < · · · < xN , and we obtain a refinement P ′ = {y1, . . . , yM} in a way
that γj and the endpoints αj, βj are included. Hence, using the triangle inequality,
we can compare the variation in both partitions and additionally, we observe that

VarP(f ?ε ) ≤ VarP(f ?ε )

=
M−1∑
k=1

|f ?ε (yk+1)− f ?ε (yk)|

≤ [f ?ε (αj)− f ?ε (γj)] + [f ?ε (βj)− f ?ε (γj)]

≤ [fε(αj)− fε(γj)] + [fε(βj)− fε(γj)]
≤ Var(fε).

(5.26)

We have used the fact that f ?ε and fε coincide in the endpoints of Ij and in the
interior fε < f ?ε . The computations are similar in case Ij would be unbounded. In
such case, f ?ε is monotone and tends to zero at infinity. Since Dfε(x) = (Df0)∗Py(x)
and the Young’s inequality we can deduce

Var(fε) = |Dfε| ≤ |Df0| ||Pε||1 = |Df0| ≤ Var(f0). (5.27)
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On one hand, f ?ε → f ? pointwise as ε→ 0. On the other, the inequalities (5.26)
and (5.27) implies VarP(f ?ε ) ≤ Var(f0) for any partition P . Therefore,

VarP(f ?) = lim
ε→0

N−1∑
k=1

|f ?ε (xk+1)− f ?ε (xk)|

= lim
ε→0

VarP(f ?ε )

≤ Var(f0).

Being P an arbitrary partition, we have the desired result

Var(f ?) ≤ Var(f0).

5.4 The regularity of heat flow maximal function:

Proof of Theorem 5.2

The proof of this theorem is essentially the same as the proof of the Theorem 5.1.
Remember that the heat flow maximal operator is given by the expression in (5.5).
The first steps consist in proving an analogous to Lemma 5.3 and then obtain a result
on the subharmonicity for f ∗ on set {x ∈ Rd; f ∗(x) > f0(x)}. The rest of the proof
follows in the same lines, we avoid to do this here since the details appear in [4].

54



References

[1] J. Bober, E. Carneiro, K. Hughes, and L. B. Pierce. On a discrete version of
Tanaka’s theorem for maximal functions. arXiv e-prints, page arXiv:1005.3030,
2010.

[2] H. Brezis. Functional analysis, Sobolev spaces and partial differential equations.
Universitext. Springer New York, 2010.

[3] L. Carleson. On convergence and growth of partial sums of Fourier series. Acta
Math., 116:135–157, 1966.

[4] E. Carneiro and B. F. Svaiter. On the variation of maximal operators of convo-
lution type. J. Funct. Anal., 265:837–865, 2013.

[5] G. B. Folland. Real analysis: Modern techniques and their applications. Pure
and applied mathematics. Wiley, 1999.

[6] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second
order. Classics in Mathematics. Springer Berlin Heidelberg, 2001.

[7] J. Kinnunen. The Hardy-Littlewood maximal function of a Sobolev function.
Israel J. Math., 100:117–124, 1997.

[8] J. Madrid. Sharp inequalities for the variation of the discrete maximal function.
B. Aust Math. Soc., 95:94–107, 2017.

[9] E. M. Stein. On the maximal ergodic theorem. Proc. Natl. Acad. Sci., 47:1894–
1897, 1961.

[10] E. M. Stein. Singular integrals and differentiability properties of functions.
Monographs in harmonic analysis. Princeton University Press, 1970.

55



[11] E. M. Stein and T. S. Murphy. Harmonic analysis: Real-variable methods, or-
thogonality, and oscillatory integrals. Monographs in harmonic analysis. Prince-
ton University Press, 1993.

[12] H. Tanaka. A remark on the derivative of the one-dimensional Hardy-Littlewood
maximal function. B. Aust Math. Soc., 65:253–258, 2002.

56


