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1 Introduction
This paper will present the proof that there exist no rational torsion points of order 11 on any
elliptic curve over Q, which was proven in 1940 by Billing and Mahler. The first half of this proof
will be presented thoroughly and rigorously, with an emphasis on detail so as to explain every
step to the reader coherently. Alas, the second half will not be as rigorous and will not justify
everything as a result of my currently limited understanding of algebraic number theory, although
the steps will be outlined as will the relevance to the overall proof. I used Ian Kiming’s notes [1]
as a basis for my proof

Theorem 1. (Billing-Mahler): An elliptic curve defined over Q does not have a rational torsion
point of order 11.

We begin by assuming that we have some elliptic curve with a rational point P̃ with order 11.
We will first propose a few definitions which are vital to the proof:

P̃i := iP̃ = P̃ + · · ·+ P̃ (i times),

and, because P̃11 = 0,
P̃i = P̃j ⇐⇒ i ≡ j (11).

Additionally,

(∗) P̃i, P̃j , P̃k lie on a line ⇐⇒ P̃i+P̃k+P̃k = 0 ⇐⇒ i+j+k ≡ 0 (11).

The connection between the second and third statement of (∗) is clear, and their connection to
the first statement is due to the following: If P̃i + P̃k + P̃k = 0, then P̃k = −(P̃i + P̃j) = (P̃i ∗ P̃j),
which is colinear with P̃i and P̃j .

We will also use the following lemma frequently, which we will not bother to prove as it follows
from some linear algebra:

Lemma: Let k be a field and let (a, b, c) and (α, β, γ) be two distinct points on P2(k). There
is a unique line through these points and it is given by:∣∣∣∣∣∣

x y z
a b c
α β γ

∣∣∣∣∣∣ = 0.

Two lines given by equations ux+ vy + wz = 0 and u′x+ v′y + w′z = 0 coincide iff the points
(u, v, w) and (u′, v′, w′) coincide as points in P2(k).

Two distinct lines in P2(k) intersect at exactly one point.

2 Implications of a Point of Order 11

Consider the 3 points P̃0 = (0, 1, 0), P̃1 = (a, b, c), and P̃2 = (α, β, γ). 0 + 1 + 2 = 3 so by (∗) we
know these points do not lie on a line. The second statement of the above lemma then implies that
the vectors (0, 1, 0), (a, b, c) and (α, β, γ) are linearly independent. Hence there is a linear map φ
of Q3 which maps the points P̃0, P̃1, andP̃2 to the points

P ′0 := (0, 1, 0), P ′1 := (1, 0, 0), and P ′2 := (0, 0, 1) respectively.
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That is, we can consider φ to be a bijective map on P2(Q) to itself that preserves lines, and
that torsion points are preserved as well, so P ′1 has order 11, so we may denote P ′i = φ(P̃i). Then
it follows from (∗) that

i+ j + k ≡ 0 ⇐⇒ P̃i, P̃j , P̃k lie on a line. ⇐⇒ P ′i , P
′
j , P

′
k lie on a line.

Namely, (∗) holds for P ′i in place of the P̃i.

Consider the point P ′3 = (u, v, w). By (∗) we know that P ′3 is not on the line through P ′0 and P ′1.
Since the line through these two points is given by the equation z = 0 (by the lemma), this implies
that w 6= 0. Similarly it is not on the line through P ′0 and P ′2 or the line through P ′1 and P ′2, so we
find that u 6= 0 and v 6= 0.

Hence we may consider another invertible linear map ψ of Q3 which is given by x 7→ x/u, y 7→
y/v, z 7→ z/w. φ is a bijective map which maps lines to lines in P2(Q). This map fixes the points
P ′0, P

′
1, and P ′2, as they are elements of P2(Q), which are equivalent under scalar multiplication by

elements of Q.
We now denote

Pi := ψ(P ′i ) = φ(ψ(P̃i)) for i ∈ Z

Thus we know:

P0 = (0, 1, 0), P1 = (1, 0, 0), P2 = (0, 0, 1), P3 = (1, 1, 1),

Pi = Pj ⇐⇒ i ≡ j (11),

and as a result of preservation of lines by ψ:

Pi, Pj , Pk lie on a line ⇐⇒ i+ j + k ≡ 0 (11).

Let us put:
P4 = (x1, x2, x3).

Proposition 1. Given the above,

P−3 = (1, 0, 1),

and the coordinates x1, x2, x3 satisfy the equation

x21x2 − x21x3 + x1x
2
3 − x22x3 = 0.

Proof. For i 6= j (11) there is a unique line through the points Pi and Pj , we will call it Li,j .
Our lemma tells us how to find an equation for Li,j if we know the coordinates of Pi and Pj .

Also, if we have integers k, i, j,m, n such that k+ i+ j ≡ k+m+ n ≡ 0 (11), which indicates
that Pk, Pi, Pj are colinear, as are Pk, Pm, Pn. Thus Pk is in the intersection Li,j ∩ Lm,n, which
will be one point if the two lines are distinct.

By use of the lemma we can get the equations for the following lines:

L0,1 : z = 0,

L0,2 : x = 0,

L0,3 : x− z = 0,

L1,2 : y = 0,

L1,4 : x3y − x2z = 0,

L2,3 : x− y = 0.

P−3 is the unique point of intersection of the lines L0,3 and L1,2, because −3+0+3 ≡ −3+1+2 ≡
0 (11), and the lines are clearly distinct. By combining these equations we find that

P−3 = (1, 0, 1).

Which proves the first statement of this proposition.
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We may now find an equation for L−3,4:

L−3,4 : −x2x+ (x1 − x3)y + x2z = 0.

The point P−1 is the unique point of intersection between L0,1 and L−3,4, so by combining their
respective equations we find that:

P−1 = (x1 − x3, x2, 0).

We may now find an equation for L−1,3:

L−1,3 : x2x− (x1 − x3)y + (x1 − x2 − x3)z = 0.

The point P−2 is the unique point of intersection between L0,2 and L−1,3, so by combining their
equations we find that:

P−2 = (0, x1 − x2 − x3, x1 − x3).

We may now find an equation for L−2,−3:

L2,3 : (x1 − x2 − x3)x+ (x1 − x3)y − (x1 − x2 − x3)z = 0.

The point P−5 is the unique point of intersection between L1,4 and L2,3, so by combining their
equations we find that:

P−5 = (x2, x2, x3).

We may now find an equation for L0,5:

L0,−5 : x3x− x2z = 0.

The point P5 is the unique point of intersection between L0,−5 and L−2.−3, so by combining their
equations we find that:

P5 = ((x1 − x3)x2,−x1x2 + x1x3 + x22 − x23, (x1 − x3)x3).

Note that x1 − x3 6= 0 as otherwise this would imply P−2 = P0, which is a contradiction; also,
x2 6= 0 as otherwise this would imply that P−5 = P2 which is a contradiction. Thus P5 is a point
in P2(Q) as the x and z components are both nonzero, and its coordinates satisfy the equations
for the lines L0,−5 and L−2,−3.

Now, since 2 + 4 + 5 ≡ 0 (11), we know that the points P2, P4, and P5 lie on a line. If we
combine the lemma with the coordinates of P2, P4, and P5, we know that:∣∣∣∣∣∣

0 0 1
x1 x2 x3

(x1 − x3)x2 −x1x2 + x1x3 + x22 − x23 (x1 − x3)x3

∣∣∣∣∣∣ = 0,

which is equivalent to the following statement:

x21x2−x21x3+x1x23−x22x3 = 0. �

Corollary 1. If there exists an elliptic curve defined over Q that has a rational point of order
11, then the cubic curve C given by the equation:

u2v − u2w + uw2 − v2w

has more than 5 rational points.
Proof. The curve C clearly has the following 5 rational points:

P0 = (0, 1, 0), P1 = (1, 0, 0), P2 = (0, 0, 1), P3 = (1, 1, 1), P−3 = (1, 0, 1).

In addition, if we assume the existence of a rational point of order 11 on some elliptic curve
over Q, proposition 1 revealed the existence of a sixth rational point P4 on C, which is different
from all the points P0, P1, P2, P3, and P−3.

3



3 The Cubic Curve C
If we prove the following proposition, it creates a contradiction with Corollary 1, which indicates
that our initial assumption that there exists a point of order 11 on any elliptic curve over Q is
false, which then implies theorem 1.

Proposition 2. The cubic curve C given by the equation:

u2v − u2w + uw2 − v2w = 0

has exactly 5 rational points (namely the 5 points (0,1,0), (1,0,0), (0,0,1), (1,1,1), and (1,0,1)).
We can apply a birational transformation to C which will give us an elliptic curve E which is

in Weierstrass form, such that rational points on C will be mapped to rational points on E.

Proposition 3. Consider the cubic curve C given by the equation:

u2v − u2w + uw2 − v2w = 0,

as well as the elliptic curve E given by the Weierstrass equation:

y2z = x3 − 4x2z + 16z3.

The map f defined by:
f(u, v, w) := (4uv, 8v2 − 4uw, uw)

maps points (u,v,w) on C with uv 6= 0 to points (x, y, z) on E with x(y + 4z) 6= 0.
conversely, the map g defined by:

g(x, y, z) := (2x2, x(y + 4z), 4z(y + 4z))

maps points (x,y,z) on E with x(y + 4z) 6= 0 to points (u, v, w) on C with uv 6= 0, and we have:

(f ◦ g)(x, y, z) = (x, y, z) whenever x(y + 4z) 6= 0.

(g ◦ f)(u, v, w) = (u, v, w) whenever uv 6= 0.

Proof. Take some point (u, v, w) on C with uv 6= 0, which clearly forces w 6= 0.
We now denote:

V :=
v

u
, W :=

w

u
, t :=

V

W
.

As we are in projective space we can freely multiply by scalar constants, so by dividing the equation
for C by u3 we have:

v2w

u3
− w2

u2
+
w

u
− v

u
= t2W 2 −W + (1− t) = 0.

If we apply the quadratic formula on t2W 2 −W + (1− t) = 0 as a degree 2 polynomial of W , we
find that

±
√
R = wt2W − 1 = 2 · v

2

uw
− 1

where
R := 1− 4t2(1− t) = 4t3 − 4t2 + 1.

Hence if we put

x := 4t = 4 · v
w
, y := ±

√
R = 8 · v

2

uw
− 4

then
y2 = 42R = 43t3 − 4 · 42t2 + 16 = x3 − 4x2 + 16

so
(x, y, 1) = (4uv, 8v2 − 4uw, uw)

is a point on the elliptic curve E.
Conversely, if (x, y, z) is a point on E with x(y + 4z) 6= 0, then

(u, v, w) := (2x2, x(y + 4z), 4z(y + 4z))
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is a point in the projective plane, and it is on C because:

u2(v − w) + uw2 − v2w = 4x2(y + 4z)(x2(x− 4z) + 8(y + 4z)z2 − (y + 4z)2z)

= 4x2(y + 4z)(x3 − 4x2z + 16z3 − y2z)

= 0.

The last two claims of proposition 3 can be easily checked. �

Corollary 2. The cubic curve C has exactly 5 rational points if and only if the elliptic curve:

E : y2z = x3 − 4x2z + 16z3

has exactly 5 rational points.
Proof. The maps f and g from proposition 3 clearly map rational points on C to rational points

on E and vice versa, respectively. From proposition 3 we know that there is a bijection between
the sets

A := (u, v, w) ∈ C(Q)|uv 6= 0

and
B := {(x, y, z) ∈ E(Q)|x(y + 4z) 6= 0}.

The rational points (u, v, w) on C which aren’t elements of A, i.e. where uv = 0, are clearly
the following 4 points:

(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1).

And likewise, the rational points (x, y, z) on E which are not in B, i.e. x(y+ 4z) = 0 are found to
be the 4 points:

(0, 1, 0), (0,±4, 1), (4,−4, 1).

Thus:
#C(Q) = 5 ⇐⇒ #A = 1 ⇐⇒ #B = 1 ⇐⇒ #E(Q) = 5.

4 The Elliptic Curve E
By Corollary 2 the following proposition implies proposition 2 which proves theorem 1.

Proposition 4. The elliptic curve:

E : x3 − 4x2 + 16

has exactly 5 rational points.
Proof. We can use Nagell-Lutz to determine that E(Q)tors has order 5 (and is generated by

the point (0, 4)).
The group E(Q) is isomorphic to E(Q)tors × Zr where r is the rank. Thus the claim reduces

to the claim that E(Q) has rank 0, i.e. that it has finitely many elements.
Note that some of the following claims, particularly those related to algebraic number theory,

will not be sufficiently justified, and will rather be accepted as a "black box" of sorts.
The polynomial f(x) := x3 − 4x2 + 16 is irreducible with discriminant:

Disc(f) = −28 · 11.

Because the discriminant is negative, there must be one real solution and two complex solutions
which are conjugates of each other. Let θ = θ1, θ2, θ3 denote the roots of f , where θ is the real
root.

Now, we consider the cubic number field:

K := Q(θ).

Through the use of a calculator, one can compute the following information about K:
The discriminant of K is:

Disc(K) = −44 = −22,
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the ring of integers of K (which is the ring of elements of K which act as integers) is:

OK = Z+ Z · 1
2
θ + Z · 1

4
θ2,

the unit rank of K is 1, and a fundamental unit is:

η := 1− 1

2
θ

so that the units of OK are:
O×K = 〈−1〉 × 〈η〉.

The class number of K is:
hK = 1.

Also, we have a homomorphism that is utilized in the proof of the irreducible case of Mordell’s
theorem:

µ : E(Q)→ K×/(K×)2

which is defined by:
µ(O) = 1, µ(x, y) := (x− θ) mod(K×)2.

The homomorphism µ has kernel 2E(Q) (I will not prove this)

We know that E(Q)tors ∼= Z/5Z, so we have

E(Q) ∼= Z/5Z× Zr

where the rank r of E(Q) is a nonnegative integer. It follows that:

Im(µ) ∼= E(Q)/2E(Q) ∼= (Z/2Z)r.

Thus, proving that r = 0 reduces to proving that µ has trivial image.

Suppose that µ doesn’t have a trivial image, so there is a rational point (x, y) on E such that
µ(x, y) is nontrivial, namely that x− θ is not a square in K.

We know that x and y can be expressed as:

x =
r

t2
, y =

s

t3

where r, s, t ∈ Z and gcd(r, t) = gcd(s, t) = 1. Thus we get that:

µ(x, y) = (x− θ) mod(K×)2 = (r − t2θ) mod(K×)2

so we know
r − t2θ /∈ (K×)2.

We now consider the integral ideal (r − t2θ) of OK . Due to another part of the proof to the
irreducible case of Mordell’s theorem, we have that:

(4) (r − t2θ) =

(∏
i

pai
i

)
· A2

where A is some integral ideal, ai ∈ {0, 1}, and the pi are distinct prime ideals of OK such that
each pi divides the discriminant:∏

j 6=k

(θj − θk)2 = Disc(f) = −28 · 11,

which due to some algebraic number theory, each pi divides the discriminant, so they each divide
either 2 or 11.

We claim that all exponents ai in the product
∏

i p
ai
i are 0. To arrive at this result we accept

that the prime decompositions of 2 and 11 in K are the following:

(2) = p3, (11) = q2 · q′ with q 6= q′
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and that we have:
NK/Q(p) = 2, NK/Q(q) = NK/Q(q

′) = 11.

The product
∏

i p
ai
i can be written to be:∏

i

pai
i = pa1qa2(q′)a3

Where a1, a2, a3 ∈ 0, 1, and ∏
i

NK/Q(pi)
ai = 2a1 · 11a2+a3 .

On the other hand, we have that∏
i

NK/Q(p)
ai ·NK/Q(A)

2 = NK/Q(r − t2θ)

= ((r − t2θ1)(r − t2θ2)(r − t2θ3))

= (t6(x− θ1)(x− θ2)(x− θ3))

= (t6y2) = (s)2

so
∏

iNK/Q(pi)
ai is a square.

Thus the only possible cases are where a1 = 0 and a2 = a3 = 0 or a2 = a3 = 1.
Consider the case in which a2 = a3 = 1. then (4) informs us that qq′|(r − t2θ). Because

11 = q2q′ we can conclude that:

11|q2(q′)2|(r − t2θ)2 = r2 − 2rt2θ + t4θ2

where the number
r2 − 2rt2θ + t4θ2

11

is in the ring of integers OK = Z + Z · 12θ + Z · 14θ
2, as 11 divides the top half. Thus 11 is forced

to divide both r and t which is a contradiction as gcd(r, t) = 1.

Thus the only remaining possibility is where a1 = a2 = a3 = 0, and (4) tells us that (r− t2θ =
A2 for some integral ideal A. Since K has class number 1, it follows that A = (α) for some α ∈ OK .
Thus:

r − t2θ = u · a2

where u is a unit that is not a square in K, because r− t2θ is not a square in K. We may assume
that u ∈ {−1, η,−η}, where η := 1− 1

2θ, such that we choose appropriate α. Now,

NK/Q(u) · · ·NK/Q = NK/Q(r − t2θ) = s2

where NK/Q(u) > 0 as the right hand side is a square. Once we consider that NK/Q(−1) = −1 and
that NK/Q(η) = 1 (which I believe implies that NK/Q(−η) = −1), we are restricted to the case

r − t2θ = η · α2

for some α ∈ OK . Let β := ηα and say β = a+ b · 12θ+ c · 14θ, where a, b, c ∈ Z. We find that a, b, c
satisfy the following equation, which is the above equation with both sides multiplied by η:

η · (r − t2θ) = (1− 1

2
θ)(r − t2θ) = β2 = (a+ b · 1

2
θ + c · 1

4
θ2)2

Upon using the fact that θ3 = 4θ2 − 16, θ4 = 4θ3 − 16θ = 16θ2 − 16θ − 64, we can calculate
that the above equation is equivalent to:

r − (
r

2
+ t2)θ +

t2

2
θ2 = (a2 − 4c2 − 4bc) + (ab− c2)θ + (

b2

4
+
ac

2
+ bc+ c2)θ2.

As these are two polynomials of θ with degree 2 it follows that their coefficients must be equal.
Namely:
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(i) r = a2−4c2−4bc,

(ii) − r − 2t2 = 2ab− 2c2,

(iii) 2t2 = b2+2ac+4bc+4c2.

Then, (iii) implies that b is even, and (ii) implies that r is even, which subsequently implies
that a is even. Since a and b are both even, then the right hand side of (iii) is divisible by 4, which
directly implies that t is now even, so gcd(r, t) ≥ 2 which contradicts gcd(r, t) = 1.

Thus, the map µ is trivial, which implies that the rank of E(Q) is 1, so #E(Q) = #Etors(Q) = 5
(proving proposition 4), and hence by corollary 2, C has exactly 5 rational points (proposition 2)
which contradicts corollary 1, which of course implies that our initial assumption that there is a
point of order 11 on some elliptic curve is false, which directly implies theorem 1. �
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