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Abstract. This paper aims to provide an elementary proof of Riemann-Roch

theorem for curves after providing an introduction to a number of basic con-
cepts found in algebraic geometry and complex analysis. The Riemann-Roch

theorem is a powerful tool for relating a purely topological invariant to an

alternative algebraic setting for the same object and has applications in many
fields of math.
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1. Introduction

The Riemann-Roch theorem is a fundamental tool in algebraic geometry. Its
usefulness includes but is not limited to classifying algebraic curves according to
useful topological invariant and determining whether prescribed poles and zeros
exist in the spectrum of functions in the field of fractions of a certain curve.

Using elementary machinery to analyze functions on a curve, we will prove the
following theorem:

Theorem 1 (Riemann-Roch). Let C be a smooth curve, let KC denote the canon-
ical divisor on C. Then there exists an integer g ≥ 0 such that for every divisor
D ∈ Div(C) the following equality holds

`(D)− `(KC −D) = degD − g + 1

Here, g is the genus of the curve C.

2. Definitions and Notation

In this section, we collect some definitions and preliminary propositions that will
be used to prove Riemann-Roch theorem for curves.

Let K be an algebraically closed field over which the objects referred to in this
paper will be defined. The affine n-space over K is the set of n-tuples

An = {(x1, ..., xn)|xi ∈ K}.
1
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Let K[X] = K[x1, ..., xn] denote a polynomial ring in n variables, and let I ⊆ K[X]
be an ideal in this polynomial ring. An affine algebraic set is a subset of An of the
form

V (I) = {P ∈ An|f(P ) = 0 for all f ∈ I}
for some ideal I ⊆ K[X]. If V is an algebraic set, the ideal associated to V is given
by

I(V ) = {f ∈ K[X]|f(P ) = 0 for all P ∈ V } ⊆ K[X]}.
An affine algebraic set V is called an (affine) variety if I(V ) is a prime ideal in

K[X]. For an affine variety V , the coordinate ring of V is defined by

K[V ] =
K[X]

I(V )

The function field of V is defined as the field of fractions of K[V ]. We define the
dimension of an algebraic variety V to be the Krull dimension of its coordinate
ring K[V ]. See [AM69, Chapter 1] for the definition of Krull dimension of a ring.

Let f1, ...fm ∈ K[X] be a set of generators for an affine variety V , and let P ∈ V
be a point. We say that V is smooth (nonsingular) at P if the m× n matrix(

∂fi
∂Xj

(P )

)
1≤i≤m,1≤j≤n

has rank n − dim(V ). We say that V is smooth (nonsingular) if V is smooth at
every point.

For a variety V and a point P ∈ V , the maximal ideal of K[V] at P is

MP = {f ∈ K[V ]|f(P ) = 0}.

Define the local ring of V at P , or K[V ]P , to be the localization of K[V ] at MP :

K[V ]P = {f ∈ K(V )|f = g/h for some g, h ∈ K[V ] and h(P ) 6= 0}

Proposition 1. Let C be a curve and P ∈ C a smooth point. Then K[C]P is a
discrete valuation ring.

Proof. See [Sil86, Chapter II.1, Proposition 1.1]. �

Now, we will define similar terminology for projective n-space. Projective n-
space, denoted Pn, is the set of n+ 1-tuples

{(x0, ..., xn) ∈ An+1| not all xi = 0}

modulo the equivalence relation (x0, ..., xn) ∼ [y0, ..., yn] if there exists a constant
λ in K such that xi = λyi∀i. An equivalence class of projective coordinates is
denoted by [x0 : ... : xn].

A polynomial f ∈ K[x1, ..., xn] is homogeneous of degree d if

f(λX0, ..., λXn) = λdf(X0, ..., Xn)

for all λ ∈ K. Similar to the affine case, we can define a projective algebraic set
associated with a homogeneous ideal I ⊆ K[x0, ..., xn] to be a subset of Pn of the
form

V (I) = {P ∈ Pn|f(P ) = 0 for all homogeneous f ∈ I}.
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For a projective algebraic set V , the homogeneous ideal of V is

I(V ) = {f ∈ K[x0, ..., xn]|f is homogeneous and f(P ) = 0∀P ∈ V }.

Furthermore, K[V ] = K[x0,...,xn]
I(V ) and K(V ) is the same as the affine case with one

additional property: if f/g ∈ K(V ), then f, g are homogeneous of the same degree.

We can define what is commonly known as a Zariski topology on An and Pn

respectively by letting the closed sets be precisely the algebraic sets, and its com-
plements in the respective An or Pn be the open sets. It is straightforward to check
that the Zariski topology defined as before is indeed a topology. We call an alge-
braic variety irreducible if it cannot be written as the union of two proper closed
subvarieties.
Clearly, Pn contains many copies of An. For instance, for each xi 6= 0, we let
Hi ⊆ Pn denote the hyperplane given by Hi = {[x0, ..., xn] ∈ Pn|xi = 0}. From
this, we can define an open set in the Zariski topology Ui = Pn \Hi. There is a nat-
ural bijection φi : Ui −→ An such that φi(x0, ..., xn) = (x0

xi
, ..., xi−1

xi
, xi+1

xi
, ..., xn

xi
).

An projective algebraic set V is called an (projective) variety if I(V ) is a prime
ideal in K[x0, ..., xn].

For a projective algebraic variety V with homogeneous ideal I(V ) ⊆ K[x0, ..., xn],
we define an affine variety V ∩An = φ−1i (V ∩Ui) so that I(V ∩An) ∈ K[x0, ..., xn]
is generated by {f(x0, ..., xi−1, 1, xi+1, ..., xn)|f(x0, ..., xn) ∈ I(V )}. Observe that
{U0, ..., Un} cover all Pn: we say that {U0, ..., Un} is an affine chart for varieties
on Pn. The process of changing a variety from progective coordinates to affine
coordinates is called dehomogenization, and the reverse process of going from affine
coordinates to projective coordinates is called homogenization.

For a projective variety V , we define the dimension of V to be the dimension
of V ∩ An. Similarly, the function field K(V ) is associated to the function field
K(V ∩ An). V is nonsingular if its respective V ∩ An is nonsingular.

An irreducible projective variety of dimension one is a curve.

Let V1, V2 ⊆ Pn. A rational map between projective varieties V1 and V2 is a map
φ : V1 −→ V2 that sends P ∈ V1 to φ(P ) = [f0(P ), ..., fn(P )] ∈ V2 for each P for
which all fi are defined polynomials.

We can define a normalized valuation on K[C]P by

ordP : K[C]P → {0, 1, 2, ...} ∪ {∞}

such that ordP (f) = sup{d ∈ Z|f ∈ Md
P }. We can extend this valuation to K(C)

by letting ordP (f/g) = ordP (f) − ordP (g) for f ∈ K[C] and g ∈ K[C]P . ordP (f)
is called the order of f at P . A uniformizer for C at P is any function f ∈ K(C)
such that ordP (f) = 1.

Suppose that ordP (f) = n. If n ≥ 0, then f is regular at P . If n < 0, then f
has a pole of order n at P ; we write f(P ) =∞. If n > 0, then f has a zero at P .
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Proposition 2. Let C be a smooth curve, let f ∈ K(C) and f 6= 0. Then f is a
pole or zero at only finitely many points.

Proof. See [Har77, Chapter I, 6.5]. �

Proposition 3. Let f be as before. If f has no poles, then f ∈ K.

Proof. Consider 1/f . Since f has no poles, then 1/f has no zeros, therefore it is
constant. If 1/f is constant, then f must be constant. �

The divisor group of C, Div(C), is the free abelian group generated by the points
of C. A divisor D ∈ Div(C) takes the form∑

P∈C
nP (P )

where nP ∈ Z and nP = 0 for all but finitely many P ∈ C. The degree of D is∑
P∈C

nP

. If C is a smooth curve and f ∈ K(C), we associate to f the divisor

div(f) =
∑
P∈C

ordP (f)(P )

Since each ordP is a valuation, the map

div : K(C)→ Div(C)

is a homomorphism of abelian groups.

We say that a divisor D is principal if there exists an f ∈ K(C) for which

D = div(f). Two divisors D1, D2 are linearly equivalent, denoted D1D̃2 if D1−D2

is principal. The Picard group of C, Pic(C) is the quotient of Div(C) by its subgroup
of principal divisors.

Proposition 4. Let C be a smooth curve, and let f ∈ K(C). Then div(f) = 0 if
and only if f ∈ K, and deg(div(f)) = 0.

Proof. If div(f) = 0, then f has no poles. By Proposition 2, f is constant. The
converse is clear. For the proof of the second part, see [Har77, Chapter II, 6.10]. �

For an explanation of differential forms on a smooth curve C, see [Sil86, Chapter
II. §4].

Here, we say that a holomorphic 1-form on a curve C is a differential form ω of
degree 1 on C that can be written locally as ω = fdx such that f is regular with
respect to the local coordinate x. We define a meromorphic 1-form on a curve C to
be a differential form of degree 1 that is regular on X \ S for some discrete, closed,
possibly empty subset S ⊂ X, such that any point a ∈ S has a neighborhood U on
which the restriction of ω can be written as fω′, where f is a rational function on U
with a pole at a and w′ is a holomorphic 1-form on U . We denote such fω′ as Resω.
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If ω is a meromorphic 1-form on C that can be locally represented as some fadx
in the neighborhood of each point a ∈ C, we define ordP (ω) = ordP (fP ). The
divisor

div(ω) =
∑
P∈C

ordP (ω)(P )

is called the canonical divisor of the meromorphic 1-form ω on the curve C.

We call a divisor D =
∑
nP (P ) effective, denoted D ≥ 0 if nP ≥ 0∀P ∈ C. For

two divisors D1, D2, we say D1 ≥ D2 to indicate that D1 −D2 is effective.
We define a vector space of functions associated with a divisor D ∈ Div(C) to be:

L(D) = {f ∈ K(C)|div(f) ≥ −D} ∪ {0}.
This set is a finite dimensional K-vector space, and we denote

`(D) = dimK L(D).

Proposition 5. Let D ∈ Div(C). If degD < 0, then L = 0 and `(D) = 0.
Furthermore, if D′ ∈ Div(C) is linearly equivalent to D, then L(D) ∼= L(D′) and
`(D) = `(D′)

Proof. Let f ∈ L(D) with f 6= 0. Then, deg div(f) = 0 ≥ deg(−D) = −deg(D), so
deg(D) ≥ 0.
Next, if D = D′ + div(g) for some g ∈ K(C), then the map L(D) → L(D′) such
that f 7→ fg is an isomorphism of vector spaces. �

We define the principal part of a function

f(z) =

∞∑
k=−∞

ak(z − a)k

at z = a to be the portion of the Laurent series consisting of terms with negative
degree. In other words,

−1∑
k=−∞

ak(z − a)k

is the principal part of the given f at a.

3. Proof of the theorem

In this section, we give a proof of the Riemann-Roch theorem for curves.

Proof of Theorem 1. First we consider the case of effective divisors. Let C be a
curve of genus g. Let K be the class of canonical divisors on C, and let

D =

n∑
m=1

miPi

be a (positive) effective divisor. Let

V =
{

(f1, ..., fn) | fi =
cmi

zmi
+ ...+

c−1
z

}
namely, the set of all tuples of functions on K(C) which contain poles of highest de-
gree at most mi for each i. Clearly, V is a linear space over K of dimension deg(D).
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Define a map φ : L(D)→ V that sends f ∈ L(D) to the tuple of principal parts
of f at the points Pi. Consider kerφ, which is a subset of functions in L(D) that are
sent to zero. Since D ≥ 0, a function f with div(f) ≥ −D that is in this kernel have
no principal parts at Pi and therefore no other poles; f is regular everywhere and
therefore has no poles; by Proposition 3, f is constant. Therefore, dim kerφ = 1,
consisting of only the constant functions.

Let Im(φ) = W . We have

`(D) = dim(kerφ) + dim(Im(φ)) = 1 + dim(W )

Consider dimW . W is a set of {fi} principal parts such that there exists f ∈ L(D)
with set of tails equal to (f1, . . . , fn). According to (X), such f exists if and only if
for all holomorphic 1-forms ω on C,

n∑
i=1

Resai
fiω = 0

For each holomorphic differential 1-form ω, consider the linear map λω : V → K
such that {f1, ..., fn} is sent to

n∑
i=1

Resaifiω = 0

From this definition, W = ∩ kerλω is the intersection of the kernels of λω over all
ω. It follows that if {λω} is the linear space generated by all λω, then

dimW = dim∩ ker(λω) = dim(V )− dim({λω})
.
We know that dim(V ) = deg(D).
So the expression becomes

dim(W ) = deg(D)− dim({λω})
and

`(D) = 1 + dim(W ) = 1 + deg(D)− dim({λω})
.

Since we know that the number of linearly independent holomorphic 1-forms in
the space of differentials on C is g, it follows that dim({λω}) ≤ g. We need only
consider the differential 1-forms that turn all principal parts to 0, as these will
correspond precisely to the maps λω that do not contribute to the space generated
by {λω}.

The principal part
cmi

zmi
+ ... at ai turns to zero when multiplied by a differential ω

such that ordai(ω) ≥ mi. This will happen only when div(ω) ≥ D, in other words,
when ω ∈ L(KC −D). Therefore, λω = 0 if and only if ω ∈ L(KC −D), so

dim({λω}) = g − `(KC −D)

From this, it follows that

`(D) = 1 + deg(D)− g + `(KC −D)

as desired.
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Next, we look at the case of the general divisor and show that

`(D)− `(KC −D) ≥ 1 + deg(D)− g
Let x ∈ C be a point on the curve; it follows immediately that

deg(D − a) = deg(D)− 1

as it is just a subtraction of integers. If the inequality holds for any divisor D, then

`(D−a)−`(KC−(D−a)) ≥ 1+deg(D−a)−g = deg(D)+1−g−1 = `(D)−`(KC−D)−1

implying the inequality is true for D − a as well.

From this, our argument is inductive in nature, where we subtract from a divisor
point-by-point. Combined with the equality for positive effective divisors proved in
the previous part, we only need to show that

`(D − a)− `(KC − (D − a)) ≥ (`(D)− `(KC −D))− 1

Clearly,
`(D) ≥ `(D − a) ≥ `(D)− 1

and
`(KC −D) + 1 ≥ `(KC − (D − a)) ≥ `(KC −D)

Therefore, the worst case scenario occurs when

`(D − a) = `(D)− 1

and
`(KC −D) + 1 = `(KC − (D − a))

Only in this case,

`(D − a)− `(KC − (D − a)) = (`(D)− `(KC − (D − a)))− 2

Because when we are not in the worst case scenario, either

`(D − a)`(KC − (D − a)) = (`(D)− `(KC − (D − a)))− 1

or
`(D − a)`(KC − (D − a)) = (`(D)− `(KC − (D − a)))

To show that the worst case scenario is impossible, take f ∈ L \ L(D − a) and
ω ∈ L(KC−(D−a))\L(KC−D). This implies that div(f) ≥ −D, div(f) < a−D,
div (ω) ≥ D − a, and div(ω) < D. By the assumption that `(D − a) = `(D) − 1
and `(KC − D) + 1 = `(KC − (D − a)), such f and ω must exist. Suppose that
D = n ·a+ .... This implies that −n+1 > orda(f) ≥ −n, therefore orda(f) = −n.
Similarly, n > orda(ω) ≥ n−1, so orda(ω) = n−1. So, orda(f ·ω) = −n+n−1 =
−1.
For all b 6= a, ordb(f · ω) ≥ 0 because div(f) ≥ −D and div(f · ω) ≥ −a, implying
that the poles may occur only at a.
However, now we have both

n∑
i=1

Resai
f · ω = 0

and Resa(f · ω) = c−1 6= 0 for some c−1 6= 0, as we have a pole of exactly order 1
at a, which is the only point where div(f · ω) has non-zero residue. However, this
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leads to the contradiction, and this scenario can never occur.

Therefore, `(D− a)− `(KC − (D− a)) ≥ (`(D)− `(KC −D))− 1. This implies
that for all divisors,

`(D)− `(KC −D) ≥ 1 + deg(D)− g
Finally, we wish to arrive at the desired equality in the previously given statement

for the arbitrary divisor D. Substitute KC −D for D in the inequality proven in
Part II. This gives us the following inequalities:

`(KC −D)− `(KC − (KC −D) ≥ deg(KC −D) + 1− g
`(KC −D)− `(D) ≥ deg(KC −D) + 1− g

`(KC −D)− `(D) ≥ deg(KC)− deg(D) + 1− g
Since deg(KC) = deg(div(ω)) = 2− 2g, we have

`(KC −D)− `(D) ≥ 2g − 2− deg(D) + 1− g = g − 1− deg(D)

`(D)− `(KC −D) ≤ deg(D) + 1− g
`(D)− `(KC −D) = deg(D) + 1− g

Combining this with the inequality proved in the second part, `(D)− `(KC −D) ≥
1 + deg(D)− g, we conclude the Riemann-Roch theorem. �
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