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Abstract

We define what it means for a function to be a modular form, prove fundamental theorems
about modular forms, and explore the relationship between lattice functions and modular
forms. We conclude by giving a small glimpse of the relationship between modular forms
and elliptic curves.

1 Introduction

In this paper, we focus on the fundamentals of modular forms. We first give a definition of a
modular form through a careful series of theorems and proofs. We follow with a discussion of
lattices and their relations to modular forms. We give a common example of a lattice function that
is also a modular form, namely Eisenstein series and we conclude by providing some motivations
for the study of modular forms by exploring their relationship with elliptic curves. This paper
follows Chapter 7 of J.P. Serre’s text A Course in Arithmetic, while filling in details that Serre
omits. The final proof follows that of Washington in his book Elliptic Curves, Number Theory,
and Cryptography.

2 Preliminary

2.1 The Modular Group

Recall the definition of the special linear group of 2× 2 matrices over the integers:

SL2(Z) :=

{(
a b
c d

) ∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1

}
We call G = SL2(Z)/ ± 1 where 1 is the identity element (the identity matrix) in SL2(Z) the
modular group. The modular group forms the starting point for our discussion of modular forms,
so it is beneficial to state and prove some facts about it. We define the complex upper half plane
H as follows:

H := {z ∈ C | Im(z) > 0}

What follows is a discussion and development of the G-action on H

Let g ∈ G be a matrix

(
a b
c d

)
. Then, for every g ∈ G, z ∈ H, the action of g on z is given

by

gz =
az + b

cz + d
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Let S, T ∈ G where S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
The S and T actions on a complex variable

z ∈ H are then

Sz = −1

z
Tz = z + 1

Furthermore, S2 = 1 and (ST )3 = 1. Now, let D :=
{
z ∈ H

∣∣ |z| ≥ 1, |Re(z)| ≤ 1
2

}
. The

following figure represents the transformations of D by the elements:

{1, T,−T, T−1S, STS, ST, S, ST−1, ST−1S, TS} ∈ G

T-T 1

ST ST−1

S

STS ST−1S

T−1S TS

Theorem 2.1.1. The modular group G is generated by the elements S and T .

Proof. We will give an explicit expression of an arbitrary element g ∈ G in terms of S and T .
For some matrix in G, we have the following multiplications on the left by the elements S and
T .

S

(
a b
c d

)
=

(
−c −d
a b

)
, Tn

(
a b
c d

)
=

(
a+ nc b+ nd
c d

)
(1)

Now let g =

(
a b
c d

)
be an arbitrary element in G. Suppose c 6= 0. If |a| > |c|, write a = cq + r

(division algorithm), where 0 ≤ r < |c|. By (1), the upper left entry of the matrix T−qg is
a − qc = r < |c|. We can apply S to T−qg to swap the rows of T−qg. Once more, if our new
matrix has a nonzero entry in the bottom left spot, we can perform the division algorithm again
to obtain a new power of T by which we can multiply T−qS by to again reduce the element in
the bottom left entry. We can continue this process until we obtain a matrix with lower left
entry 0. Since this matrix must still be in G (as it is a product of matrices in G), it must have
integer entries and determinant 1. Thus, it is of the form(

±1 m
0 ±1

)
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where m ∈ Z and the diagonal entries have the same sign. This matrix is either Tm or −T−m,
so there exists h ∈ G that is the multiple of powers of T and copies of S such that hg = ±Tn
for some n ∈ Z. As Tn ∈ G and S2 = I, we can write g = ±h−1Tn where h−1 is generated by S
and T and we are done.

Theorem 2.1.2. Let D, G, and H be as above.

(1) For every z ∈ H, there exists g ∈ G such that gz ∈ D.

(2) Suppose z, z′ ∈ H are congruent modulo the G-action. That is, suppose z and z′ have the
same orbit under the G-action. Then,

(i) Re(z) = ± 1
2 and z = z′ ± 1 or

(ii) |z| = 1 and z′ = − 1
z

(3) Fix z ∈ D and let Gz = {g ∈ G | gz = z} be the stabilizer of z under the G-action.
Gz = {1} except if:

(i) z = i, in which case Gz is generated by S and is a group of order 2;

(ii) z = e
2πi
3 , in which case Gz is generated by ST and is a group of order 3;

(iii) z = e
πi
3 , in which case Gz is generated by TS and is a group of order 3.

Proof. Let G′ ≤ G be the subgroup of G generated by S and T . Let g ∈ G′, g =

(
a b
c d

)
.

Suppose z ∈ H, z = r + si. Then,

Im(gz) = Im

(
az + b

cz + d

)
= Im

(
ar + asi+ b

cr + csi+ d

)
= Im

(
(ar + b) + asi

(cr + d) + csi

)
= Im

(
(ar + b)(cr + d)− csi(ar + b) + asi(cr + d)

|cz + d|2

)
= Im

(
(da− bc)si
|cz + d|2

)
=

Im(z)

|cz + d|2

Fix M ∈ Z. Then, |{(c, d) ∈ Z2 | |cz + d| < M}| <∞. Thus, there exists a pair (c, d) such that

|cz+d| is minimal and consequently Im(z)
|cz+d|2 is maximal. In other words, we can find h ∈ G′ such

that Im(hz) = Im(z)
|cz+d|2 is maximized. We now choose an integer n such that |Re(Tnhz)| ≤ 1

2 .

Let z′ = Tnhz. Then,

Im

(
−1

z′

)
=
Im (z′)

|z′|2

so if |z′| < 1, Im
(−1
z′

)
> Im (z′). As this is impossible, |z′| ≥ 1. Therefore, g′ = Tnhz is in the

fundamental domain D. Let z ∈ D and choose g ∈ G, g =

(
a b
c d

)
such that gz ∈ D. Suppose

Im(gz) ≤ Im(z). Then, replace the pair (z, g) with (gz, g−1) to obtain Im(g−1gz) = Im(z) ≤
Im(gz). We can thus assume without loss of generality, that Im(gz) ≥ Im(z), so |cz + d| ≤ 1.
This is only possible if |c| < 2, so we consider the cases c = −1, 0, 1.
Suppose c = 0. Since g is an element of the modular group, its determinant must be 1. Therefore,
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d = ±1. Therefore, gz = z ± b. Since z, gz ∈ D, |Re(z)| ≤ 1
2 and |Re(gz)| ≤ 1

2 . Hence, we have

b =


0 if g =

(
1 0

0 1

)
, |Re(z)| = |Re(gz)| < 1

2

−1 if Re(z) = 1
2 , Re(gz) = − 1

2

1 if Re(z) = − 1
2 , Re(gz) = 1

2

If c = 1, |z + d| ≤ 1, so d = 0, unless

z =

{
e

2πi
3 =⇒ d = 0 or 1

e
πi
3 =⇒ d = 0 or − 1

When d = 0, |z| = 1, and b = −1. Therefore, gz = a− 1
z . Thus, a = 0 except when Re(z) = ± 1

2

(equivalently when z = e
2πi
3 or z = e

πi
3 ), in which case a = 0,−1 or a = 0, 1. When z = e

2πi
3

and d = 1, a− b = 1 and a−1

1+e
2πi
3

= a+ e
2πi
3 , implying that a = 0, 1. Similarly, we find that when

z = e
πi
3 and d = −1, a must be 0 or −1. Suppose c = −1. We can change the signs of all a, b, c, d

in g, which does not change the g-action on an element in H, and follow the same argument as
the case when c = 1.

2.2 Lattices

We begin with the definition of a lattice. There are many equivalent definitions, but we will use
the following one for the sake of this paper.

Definition 2.2.1. Let V be a finite dimensional real vector space. A lattice Γ of V is a discrete
subgroup of V (where V is viewed as a group) that generates V .

Consider the vector space C over the field R. Let R be the set of lattices of C. Let

M :=

{
(ω1, ω2) ∈ C2 | Im

(
ω1

ω2

)
> 0

}
The condition that Im

(
ω1

ω2

)
> 0 is equivalent to saying that ω1 and ω2 cannot both be real. We

associate the lattice Γ(ω1, ω2) = Zω1 ⊕ Zω2 with the lattice basis {ω1, ω2}. Suppose

g =

(
a b
c d

)
∈ SL2(Z), (ω1, ω2) ∈M

Then, the pair {ω′1, ω′2} where ω′1 = aω1 + bω2 and ω′2 = cω1 + dω2 forms a different lattice basis

for Γ(ω1, ω2). Indeed, let z = ω1

ω2
and z′ =

ω′
1

ω′
2
. Then,

z′ =
aω1 + bω2

cω1 + dω2
=
aω1

ω2
+ b

cω1

ω2
+ d

=
az + b

cz + d
= gz

Theorem 2.2.1. Two elements of M define the same lattice if and only if they are congruent
modulo the SL2(Z) action.
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Proof. We have shown above that if (ω1, ω2) and (ω′1, ω
′
2) are congruent modulo the SL2(Z)

action, then they define the same lattice. We will now show the converse. Suppose (ω1, ω2) and
(ω′1, ω

′
2) are both in M and both define the same lattice. Then, since (ω1, ω2) lies in the lattice

generated by (ω′1, ω
′
2), we can write[

ω1

ω2

]
=

(
a b
c d

)[
ω′1
ω′2

]
= P

[
ω′1
ω′2

]
We can represent (ω′1, ω

′
2) as a linear combination of (ω1, ω2) likewise. If we invert P , we get

P−1

[
ω1

ω2

]
=

[
ω′1
ω′2

]
Thus, det(P ) = det(P−1 = det(P )−1, where P and P−1 both have integer entries. Hence,

det(P ) = ±1. Suppose det(P ) = −1. Then, Im
(
ω1

ω2

)
= −Im

(
ω′

1

ω′
2

)
. But since both (ω1, ω2) and

(ω′1, ω
′
2) are in M , the signs must be the same. Thus, det(P ) = 1, and so P ∈ SL2(Z).

Due to Theorem 2.2.1, we can write the definition of R as M/SL2(Z). Now, suppose we start
with some (ω1, ω2) ∈M . As usual, we call the lattice generated by (ω1, ω2) Γ(ω1, ω2) ∈ R. Scale
the pair (ω1, ω2) by λ ∈ C× to arrive at (λω1, λω2). Then, the lattice generated by (λω1, λω2) is
λΓ and is equivalent to the action of an element in SL2(Z) on Γ. In other words, the action of
scaling on M commutes with the action of SL2(Z) on R. Thus, the map

(ω1, ω2) 7→ z =
ω1

ω2
(2)

gives a transformation of the action of SL2(Z) on M to the G action on H. Furthermore, the
map given by (2) defines a bijection between R/C× and H/G. Recall that we can associate to
each Γ in C an elliptic curve EΓ = C/Γ. If Γ′ = λΓ, then the elliptic curves EΓ and EΓ′ are
isomorphic. This gives us yet another equivalent description of H/G - namely that it is the set
of isomorphism classes of elliptic curves. Particularly, two elliptic curves are isomorphic if the
lattices defining them are in the same equivalence class in R/C×.

3 Modular Forms and Lattice Functions

3.1 Modular Forms

We begin with a short description of what a meromorphic complex function is.

Definition 3.1.1. A complex-valued function f(z) is meromorphic on an open set D of the
complex plane if it is holomorphic (resp. complex differentiable, analytic) on all of D except for
a finite set of isolated points, called poles.

A meromorphic function is the ratio of two holomorphic functions. That is, if f and g are

holomorphic functions, then f(z)
g(z) is meromorphic and has poles at the zeroes of g(z). With this

brief recollection of the idea of a meromorphic function, we are ready to give our first major
definition pertaining to modular forms.

Definition 3.1.2. A weakly modular function of weight 2k (resp. k, −2k) where k ∈ Z is a
function that is meromorphic on H and satisfies

f(z) = (cz + d)−2kf

(
az + b

cz + d

)
for all

(
a b
c d

)
∈ SL2(Z)
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Theorem 3.1.1. Suppose f is a meromorphic function on H. Then f is a weakly modular
function of weight 2k if and only if it satisfies both

f(z + 1) = f(z) (3)

f

(
−1

z

)
= z2kf(z) (4)

Proof. Let g =

(
a b
c d

)
∈ SL2(Z) and consider the derivative of gz, with respect to z

d(gz)

dz
=
d
(
az+b
cz+d

)
dz

=
a(cz + d)− c(az + b)

(cz + d)2

=
acz + ad− acz − cb

(cz + d)2
=

ad− bc
(cz + d)2

=
1

(cz + d)2

Thus, we can write

f(gz)

f(z)
=

(
d(gz)

dz

)−k
(5)

By Theorem 2.1.1, the modular group G is generated by the elements S and T . Thus, if f is a
meromorphic function on H, and (5) is satisfied for S and T , then f is a weakly modular function
of weight 2k. For S, we can write (5) as f

(−1
z

)
= z2kf(z), so (4) is satisfied. Likewise for T

we have f(z + 1) = f(z), so (3) is satisfied. The same argument in reverse works to show the
converse.

Suppose (3) is satisfied. Then, f is a periodic function of period 1, so we can represent
f with a Fourier series. That is, f can be represented as a function of q = e2πiz. Let f̃ be
this representation of f . f is meromorphic on H, so f̃ is meromorphic on the (punctured) unit
disk |q| < 1 with the origin removed. Under the conformal mapping that takes f to f̃ (resp,
z 7→ e2πiz), the point i∞ gets sent to e2πi(i∞) = e−2π∞ = 0. Thus, if f̃ extends to a meromorphic
(resp. holomorphic) function at the origin, we say that f is meromorphic (resp. holomorphic)
at infinity. In other words, if f̃ extends to a meromorphic (resp. holomorphic) function at the
origin, then f̃ has a Laurent expansion in some neighborhood of the origin given by

f̃(q) =

∞∑
−∞

anq
n

where an = 0 when n < 0. Finally, we come to the definition of modular functions and modular
forms.

Definition 3.1.3. If f is a weakly modular function and extends to a meromorphic function at
infinity, we call f a modular function. In this case, we set f(∞) = f̃(0).

Definition 3.1.4. Suppose f is a complex-valued function. Then, we call f a modular form if

(i) f(z) = (cz + d)−2kf
(
az+b
cz+d

)
,
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(ii) f is holomorphic on H, and

(iii) f is holomorphic at ∞.

In this case, we once again set f(∞) = f̃(0). If f(∞) = f̃(0) = 0 (that is, if f assumes the value
of 0 at ∞, or equivalently if the constant term in the Laurent expansion of f̃(q) is 0), then we
call f a modular cusp form.

3.2 Lattice Functions

Once again, we begin with a definition.

Definition 3.2.1. Suppose F is a function on R (the set of lattices of C×) and k ∈ Z. F is a
modular lattice function of weight 2k if

F (λΓ) = λ−2kF (Γ) (6)

for all lattices Γ ∈ R and all λ ∈ C×.

Now suppose F is a lattice function of weight 2k and let (ω1, ω2) ∈M . F (ω1, ω2) is the value
of F on the lattice Γ(ω1, ω2). Then, (6) gives us

F (λω1, λω2) = λ−2kF (ω1, ω2) (7)

Let λ = ω2. By the map given in the preliminary lattice section by (2) z = ω1

ω2
, there exists a

function f on H such that

F (ω1, ω2) = ω−2k
2 f(z) (8)

If we say that F is invariant under SL2(Z),

f(z) = (cz + d)−2kf

(
az + b

cz + d

)
for all

(
a b
c d

)
∈ SL2(Z) (9)

Likewise, if a function f satisfies (9), then by (8), we can identify f with a function F on R of
weight 2k. This gives us our main result, namely that modular lattice functions of weight 2k can
be identified with modular functions of weight 2k and vice versa.

3.3 Eisenstein Series

We begin with the definition of Eisenstein series.

Definition 3.3.1 (Eisenstein Series). Let k ∈ Z, k > 1 and let Γ be as usual, a lattice in C×.
Then,

Gk(Γ) =
∑

06=γ∈Γ

1

γ2k

We call Gk the Eisenstein series of index k.

This series is absolutely convergent (see Serre). Furthermore,

Gk(λΓ) =
∑

06=γ∈Γ

1

(λγ)2k
= λ−2k

∑
06=γ∈Γ

1

γ2k
= λ−2kGk(Γ)
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Therefore, we see that Gk is a lattice function of weight 2k. We can thus view Gk as a function
on M .

Gk(ω1, ω2) =
∑

(0,0) 6=(m,n)

1

(mω1 + nω2)2k

Now consider, as in the lattice preliminary section, the map (ω1, ω2) 7→ z = ω1

ω2
. We can write

Gk(ω1, ω2) =
∑

(0,0)6=(m,n)

1(
1
ω2

)2k

(mω1 + nω2)2k

=
∑

(0,0) 6=(m,n)

1

(mz + n)2k
(10)

= Gk(z)

Here, Gk(z) differs from Gk(ω1, ω2) by a factor of ω2k
2 .

Theorem 3.3.1. Let k ∈ Z, k > 1. Then, Gk(z) is a modular form of weight 2k with Gk(∞) =
2ζ(2k).

Proof. Gk is convergent (see Serre). Thus, in conjunction with the agrument that Gk is a
lattice fuction of weight 2k, Gk is weakly modular of weight 2k. Suppose now that z ∈ D, the
fundamental domain of the G-action on H. Then, we have

|mz + n|2 = m2zz̄ + 2mnRe(z) + n2 ≥ m2 −mn+ n2 = |mρ− n|2

where ρ = e
2πi
3 . The series

∑
(0,0)6=(m,n)

1

|mρ− n|2k
converges in D (see Serre) and thus in gD for

g ∈ G. The set {gD|g ∈ G} covers H, so Gk is holomorphic on all of H. We now show that Gk
has a limit as z → i∞, and thus Gk is “holomorphic at infinity.” We can again suppose Z ∈ H.
The terms of Gk for which m 6= 0 give us Gk(z)→ 0. The terms of Gk for which m = 0 give us:

lim
z→i∞

Gk(z) =
∑
n 6=0

1

n2k
= 2

∞∑
n=1

1

n2k
= 2ζ(2k)

Having developed an understanding of Eisenstein series as a modular form, we now describe
a modular cusp form given by Eisenstein series of particular weights. Suppose we have the
following:

g2 = 60G2, g3 = 140G3

where G2 is the Eisenstein series of weight 4 and G3 is the Eisenstein series of weight 6. We have

g2(∞) = 120ζ(4), g3(∞) = 280ζ(6)

by Theorem 3.3.1. The values of ζ(4) and ζ(6) are π4

90 and π6

945 , respectively. Thus,

g2(∞) =
4

3
π4, g3(∞) =

8

27
π6

Now let
∆ = g3

2 − 27g2
3
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Then,

∆(∞) = g2(∞)3 − 27g3(∞)2 =
64

27
π12 − 64

27
π12 = 0

Since g2 and g3 are modular forms, ∆ is a modular form. Furthermore, it assumes the value 0
at infinity. Thus, it is a modular cusp form. Note that we do not know from this alone that the
function ∆ is not the 0 function. In the next section, we explain why ∆ is not identically zero.

4 Modular Forms and Elliptic Curves

4.1 The Weierstrass ℘-function

In this section, we will ignore issues of convergence of the ℘ function.

Definition 4.1.1. Let Γ be a lattice in C×. Then, the Weierstrass ℘-function corresponding to
Γ is

℘Γ(z) =
1

z2
+
∑

06=γ∈Γ

(
1

(z − γ)2
− 1

γ2

)
We denote the negative of the antiderivative of ℘(z) as ζ℘(z). We have the explicit formulation

of ζ℘(z)

ζ℘(z) =
1

z
+
∑
γ 6=0

(
1

z − γ
+

1

γ
+

z

γ2

)
We can expand the summand to the following

1

z − γ
+

1

γ
+

z

γ2
= − z

2

γ3
− z3

γ4
− z4

γ5
. . .

Thus,

ζ℘(z) =
1

z
−
∞∑
k=2

Gk(z)z2k−1

where Gk(z) is the Eisenstein series of index k. The odd powers have disappeared here since
℘(z) is an even function. Note that ℘(z) = −ζ ′℘(z), so

℘(z) =
1

z2
+

∞∑
k=2

(2k − 1)Gk(z)z2k−2 (11)

In terms of lattices, we can rewrite (9) as

℘Γ(z) =
1

z2
+

∞∑
k=2

(2k − 1)Gk(Γ)z2k−2

We now turn to the relationship between the Weierstrass ℘-function and elliptic curves. We by
stating a theorem without proof that will be necessary to prove subsequent propositions.

Theorem 4.1.1. Let f be a doubly-periodic function on the lattice Γ and let F be the fundamental
parallelogram of Γ (the paralellogram who’s left and bottom sides are (ω1, ω2), the basis for Γ).
Then,

1. If f has no poles, then f is constant
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2. If f is not constant, then f : C→ C ∪∞ is surjective. If n is the sum of the orders of the
poles of f in F , and z0 ∈ C, then f(z) = z0 has n solutions (if a solution has multiplicity
> 1, then it will count towards n multiple times).

Proposition 4.1.1. The values ℘Γ

(
ωi
2

)
are distinct for each ωi.

Proof. ℘′(z) is doubly periodic, so ℘′
(
ωi
2

)
= ℘′

(
−ωi2

)
. ℘′ is even, so ℘′

(
−ωi2

)
= −℘′

(
ωi
2

)
. Thus,

℘′
(ωi

2

)
= 0, i = 1, 2, 3 (12)

Therefore, each ℘
(
ωi
2

)
is a root of 4x3 − g2x− g3. Let

hi(z) = ℘(z)− ℘
(ωi

2

)
Then, hi

(
ωi
2

)
= h′i

(
ωi
2

)
= 0. In other words, hi vanishes with order of vanishing at least 2 at

the points ωi
2 . Let F be the fundamental parallelogram of the lattice Γ on which ℘ is defined.

Then, hi(z) has a single pole in F (the double pole at z = 0). By Theorem 4.1.1, we can deduce
that ωi

2 is the only zero of hi(z). Particularly, hi
(ωj

2

)
is nonzero when j 6= i. Therefore, each of

℘
(
ωi
2

)
are distinct.

Proposition 4.1.2. Let E : y2 = f(x) = 4x3 − g2x− g3. Then,

Φ : C/Γ→ E(C) (13)

z 7→ (℘Γ(z), ℘′Γ(z)) (14)

0 7→ ∞ (15)

is an isomorphism of groups. That is, the elliptic curve E is isomorphic to the elliptic curve
defined by C/Γ.

The proof of this proposition is not trivial. A sketch is provided below.

Proof. We begin by showing that Φ is surjective. Let (x, y) ∈ E(C). The fuction ℘(z)− x has a
double pole, so it cannot be constant. Thus, it must have zeroes. Therefore, there exists z ∈ C
such that ℘(z) = x. We have

℘′(z) = y2

so ℘(z) = ±y. If ℘′(z) = y, then we have shown surjectivity, since we have found an element in
C/Γ that maps to (x, y) ∈ E(C) for every (x, y) ∈ E(C). If ℘′(z) = −y, then since ℘′(z) is an
even function, ℘′(−z) = y, and ℘(−z) = x, so −z 7→ (x, y).
Next, we show that Φ is injective. Suppose ℘(z1) = ℘(z2) and ℘′(z1) = ℘′(z2) and z1 and z2 are
not congruent modulo Γ (that is, they do not lie on the same lattice in C). The poles of ℘(z) all
lie in Γ, so if z1 is a pole for ℘, then z1 ∈ Γ and thus, z2 ∈ Γ. But this would mean that z1 and
z2 would be congruent modulo Γ. So, we may assume that z1 is not a pole of ℘ and thus does
not lie in Γ. Consider the function

h(z) = ℘(z)− ℘(z1)

One can check that h(z) has a double pole at z = 0 and no other poles in the fundamental
parallelogram of Γ. By Theorem 4.1.1, h(z) has exactly 2 zeroes. Suppose now that z1 = ωi

2
for some i. Then, (12) tells us that ℘′

(
ωi
2

)
= 0, so z1 is a double root of h(z). Since we know

that h(z) has only two roots, z1 is the only root of h(z). We can conclude that z2 = z1. If z1
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does not take the form ωi
2 , then since h(−z1) = h(z1) = 0, and since z1 is not congruent to −z1

modulo Γ, the two zeroes of h(z) are z1 and −z1 modulo Γ. So, z2 is congruent to −z1 modulo
Γ. However,

y = ℘′(z2) = ℘′(−z1) = −℘′(z1) = −y
so ℘′(z1) = y = 0. However, ℘′(z) has a triple pole, and so only three zeroes in F . (12) tells us
that the three zeroes occur at ωi

2 for i = 1, 2, 3. But, z 6= ωi
2 . This gives a contradiction, so z1 is

congruent to z2 modulo Γ, and thus Φ is injective.
We have shown that Φ is bijective, so all that remains in to show that Φ is a group homomorphism.
Once again, let z1, z2 ∈ C. Let

Φ(zi) = Pi = (xi, yi)

We provide some restrictions on P1 and P2. Namely, assume that both P1 and P2 are finite and
that the line that goes through P1 and P2 intersects E in three distinct finite points. Practically
speaking this means that P1 6= ±P2, P1 + 2P2 6= ∞, and 2P1 + P2 6= ∞. We can provide these
restrictions without hindering the completeness of the proof because the addition formula on E is
entirely different when P1 = P2 and the connection between double roots in algebraic calculation
of points on E and double roots in the corresponding functions is not pertinent to proving the
homomorphism. Let y = ax+ b be the line passing through P1 and P2. Then, by the constraints
defined prior, y = ax+ b intersects E at a third distinct finite point. We will call this point P3

and let
Φ(z3) = P3 = (x3, y3)

where z3 ∈ C. Using the standard group law formulas for points on E, we have

x3 =
1

4

(
y2 − y1

x2 − x1

)2

− x1 − x2

=
1

4

(
℘′(z2)− ℘′(z1)

℘(z2)− ℘(z1)

)2

− ℘(z1)− ℘(z2)

Now, let
l(z) = ℘′(z)− a℘(z)− b

l(z) has zeroes at z = z1, z2, z3. Since l(z) has a triple pole at 0 and no other poles, it has three
zeroes in F . We can, by utilizing tools from complex analysis, write

℘(z1 + z2) =
1

4

(
℘′(z2)− ℘′(z1)

℘(z2)− ℘(z1)

)
− ℘(z1)− ℘(z2) (16)

It can be shown that this formula holds for all zi for which it is defined (recall that we excluded
some zi due to our constraints on points on E that we consider). We now turn our attention to
the y-coordinate. We need to compute ℘′(z1 + z2). Differentiating ℘′(z)2 = 4℘(z)3− g2℘(z)− g3

yields

2℘
′′
℘′ = (12℘2 − g2)℘′ (17)

We can divide by ℘′ to obtain
2℘

′′
(z2) = 12℘(z2)2 − g2

We can differentiate ℘(z1 + z2) to get an expression ℘′(z1 + z2) into which we can substitute
(17). The resulting expression will give ℘′(z1 + z2) in terms of ℘(z1), ℘′(z1), ℘(z2) and ℘′(z2).
We can show that this expression is equivalent to −y3. Therefore,

(℘(z1), ℘′(z1)) + (℘(z2), ℘′(z2)) = (℘(z1 + z2), ℘′(z1 + z2))
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In other words,

Φ(z1) + Φ(z2) = Φ(z1 + z2) (18)

However, we still have to check the cases of (18) when (16) is not defined. We can easily check
the cases where ℘(zi) = ∞ and z1 is congruent to −z2 modulo Γ. Suppose now that z1 = z2.
Then, let z2 → z1 and use (16) and (17) in conjunction with l’Hopital’s rule to get

℘(2z1) =
1

4

(
℘

′′
(z1)

℘′(z1)

)2

− 2℘(z1)

=
1

4

(
6℘(z1)2 − 1

2g2

℘′(z2)

)2

− 2℘(z1)

=
1

4

(
6x2

1 − 1
2g2

y1

)2

− 2x1

This is the formula for x3 we get from addition formula with P1 and P2. We can differentiate
with respect to z1 to obtain a similar formula to (18). Therefore, we have

Φ(z1) + Φ(z1) = Φ(2z1)

and we are done. [2]

Note that we can deduce from this that the modular cusp form ∆ is not identically 0, since
its values are discriminants of nonsingular elliptic curves, as shown.

References

[1] Serre, J.P. A Course in Arithmetic. 1996.

[2] Washington, Lawrence C. (2008). Elliptic Curves: Number Theory and Cryptography, CRC
Press.

[3] Silverman and Tate. (1994). Rational Points on Elliptic Curves, Springer.

[4] Brubaker (2008). Modular Forms, MIT.

[5] Ahlfors, Lars. (1979). Complex Analysis, McGraw Hill.

12


