MORDELL'S THEOREM

SARAH MARSHALL

We will be roughly following the proof for Mordell's Theorem given in [1]. In order to properly understand and prove Mordell's Theorem, the concept of height must be defined and four lemmas must be stated and proven.

Definition: Let x be a rational number such that $x=\frac{m}{n}$ is in lowest terms. The height of $x, H(x)$ is defined as

$$
H(x)=H\left(\frac{m}{n}\right)=\max \{|m|,|n|\}
$$

The height of rational number measures its complexity. The following property of height makes it very useful for the proof of Mordell's Theorem:

Property: (Finiteness Property of the Height) The set of all rational numbers whose height is less than some fixed number is a finite set.

Proof. Suppose the height of a rational number $x=\frac{m}{n}<M$ where M is some fixed number. Then $|m|,|n|<M$ and thus there is only a finite amount of choices for m and n.

When considering a ration point $P=(x, y)$ on the elliptic curve $C: y^{2}=x^{3}+a x^{2}+b x+c$, with $a, b, c \in \mathbb{Z}$, the height of the point P is the height of the x-coordinate. The height of the point at infinity, \mathcal{O} is defined to be 1 .

Since the height does not behave additively with respect to the addition law for points on the curve, it is more useful to use

$$
h(P)=\log H(P)
$$

Lemma 1: For every real number M, the set $\{P \in C(\mathbb{Q}): h(P) \leq M\}$ is finite.
Proof. The finiteness property of height applies to the rational points on C with respect to the height, $h(P)$, defined above. Suppose M is positive number. Since the height of a point P is defined as the height of the x -coordinate of P and P is a rational point, there are finitely many x-coordinates with height less than M. Each x-coordinate has only two choices for a y-coordinate. Thus, there are finitely many rational points P on the curve C such that $h(P) \leq M$.

Now, using the height of a point, $h(P)$, Lemma 2, relates the height of P_{0} and $P+P_{0}$.

Lemma 2: Let P_{0} be a fixed rational point of C. There is a constant κ_{0} that depends on P_{0} and on a, b, c such that

$$
h\left(P+P_{0}\right) \leq 2 h(P)+\kappa_{0}
$$

Proof. If $P_{0}=\mathcal{O}$, then the lemma is trivial. Thus, assume $P_{0} \neq \mathcal{O}$ so $P_{0}=\left(x_{0}, y_{0}\right)$. Take $P=(x, y)$. It suffices to prove the lemma for all P except $P=P_{0},-P_{0}$, and \mathcal{O}. This is good because $x \neq x_{0}$ so we don't need to use the duplication formula. By excluding these points, κ_{0} will depend on these points. This does not pose an issue since κ_{0} will already depend P_{0}, a, b, c and thus excluding these points will not effect the inequality.
Now suppose

$$
P+P_{0}=(\zeta, \eta)
$$

Finding the height of $P+P_{0}$ amounts to finding the height of ζ. Can write ζ in terms of $\left(x_{0}, y_{0}\right)$ and (x, y) as such

$$
\begin{gathered}
\zeta+x+x_{0}=\lambda^{2}-a \text { with } \lambda=\frac{y-y_{0}}{x-x_{0}} \\
\Leftrightarrow \zeta=\left(\frac{y-y_{0}}{x-x_{0}}\right)^{2}-a-x-x_{0} \\
=\frac{\left(y-y_{0}\right)^{2}-\left(a+x+x_{0}\right)\left(x-x_{0}\right)^{2}}{\left(x-x_{0}\right)^{2}} \\
=\frac{y^{2}-2 y y_{0}+y_{0}^{2}-\left(a+x+x_{0}\right)\left(x^{2}-2 x x_{0}+x_{0}^{2}\right)}{x^{2}-2 x x_{0}+x_{0}^{2}} \\
=\frac{a x^{2}+b x+c-2 y y_{0}+y_{0}^{2}-\left(a x^{2}-2 x x_{0} a-x_{0} x^{2}-x x_{0}^{2}+a x_{0}^{2}+x_{0}^{3}\right)}{x^{2}-2 x x_{0}+x_{0}^{2}} \\
=\frac{b x+c-2 y y_{0}+y_{0}^{2}-\left(-2 x x_{0} a-x_{0} x^{2}-x x_{0}^{2}+a x_{0}^{2}+x_{0}^{3}\right)}{x^{2}-2 x x_{0}+x_{0}^{2}} \\
=\frac{A y+B x^{2}+C x+D}{E x^{2}+F x+G}
\end{gathered}
$$

where A, B, \ldots, G depend on a, b, c and x_{0}, y_{0}. Multiply by least common denominator so that A, B, \ldots, G are integers.
Since $x=\frac{m}{e^{2}}$ and $y=\frac{n}{e^{3}}$ with x and y in lowest terms and $\operatorname{gcd}(m, e)=\operatorname{gcd}(n, e)=1$, can rewrite ζ as

$$
\zeta=\frac{A \frac{n}{e^{3}}+B\left(\frac{m}{e^{2}}\right)^{2}+C \frac{m}{e^{2}}+D}{E\left(\frac{m}{e^{2}}\right)^{2}+F \frac{m}{e^{2}}+G}
$$

Clearing the denominators gives

$$
\zeta=\frac{A n e+B m+C m e^{2}+D e^{4}}{E m+F m e^{2}+G e^{4}}
$$

Since it is not known if ζ is in lowest terms,

$$
H(\zeta) \leq \max \left\{\left|A n e+B m+C m e^{2}+D e^{4}\right|,\left|E m+F m e^{2}+G e^{4}\right|\right\}
$$

Need to put bounds on m, e^{2}, and n. When looking at the height of a point $P=\left(\frac{m}{e^{2}}, \frac{n}{e^{3}}\right)$, $H(P)=\max \left\{|m|,\left|e^{2}\right|\right\}$. Thus, $|m| \leq H(P)$ and $\left|e^{2}\right| \leq H(P)$.
Now put bound on n. By substituting in $x=\frac{m}{e^{2}}$ and $y=\frac{n}{e^{3}}$ to $y^{2}=x^{3}+a x^{2}+b x+c$ and clearing the denominator,

$$
n^{2}=m^{3}+a m^{2} e^{2}+b m e^{4}+c e^{2}
$$

Taking absolute values and using triangle inequality gives

$$
\begin{gathered}
\left|n^{2}\right| \leq\left|m^{3}\right|+\left|a m^{2} e^{2}\right|+\left|b m e^{4}\right|+\left|c e^{2}\right| \\
\leq H(P)^{3}+a H(P)^{3}+b H(P)^{3}+c H(P)^{3}
\end{gathered}
$$

Thus, $|n| \leq K H(P)^{3 / 2}$ for $K=\sqrt{1+|a|+|b|+|c|}$.
Therefore,

$$
\begin{aligned}
\mid A n e+B m+ & C m e^{2}+D e^{4}\left|\leq|A n e|+|B m|+\left|C m e^{2}\right|+\left|D e^{4}\right|\right. \\
& \leq(|A K|+|B|+|C|+|D|) H(P)^{2}
\end{aligned}
$$

and

$$
\begin{gathered}
\left|E m+F m e^{2}+G e^{4}\right| \leq|E m|+\left|F m e^{2}\right|+\left|G e^{4}\right| \\
\leq(|E|+|F|+|G|) H(P)^{2}
\end{gathered}
$$

Hence,

$$
H\left(P+P_{0}\right)=H(\zeta) \leq \max \{|A K|+|B|+|C|+|D|,|E|+|F|+|G|\} H(P)^{2}
$$

Take logarithm

$$
h\left(P+P_{0}\right) \leq 2 h(P)+\kappa_{0}
$$

where

$$
\kappa_{0}=\log \max \{|A K|+|B|+|C|+|D|,|E|+|F|+|G|\}
$$

Lemma 3: For rational points P on the curve $C: y^{2}=x^{3}+a x^{2}+b x$, there is a constant κ depending on a, b, c such that

$$
h(2 P) \geq 4 h(P)-\kappa
$$

Proof. As with Lemma 2, assume that the inequality holds for all P except for points in a finite fixed set. In this, lemma, points P such that $2 P=\mathcal{O}$ will not be considered. As with Lemma 2 , excluding these points will cause κ to depend on them but since κ already depends on a, b, c, exclusion of these points will not effect the inequality. Suppose $P=(x, y)$ is a point on C and $2 P=(\zeta, \eta)$. Then

$$
\zeta+2 x=\lambda^{2}-a \text { with } \lambda=\frac{f^{\prime}(x)}{2 y}
$$

Since $y^{2}=f(x)=x^{3}+a x^{2}+b x+c$, can write

$$
\begin{gathered}
\zeta=\left(\frac{f^{\prime}(x)}{2 y}\right)^{2}-a-2 x \\
\zeta=\frac{f^{\prime}(x)^{2}-(4 a+8 x) f(x)}{4 f(x)} \\
\zeta=\frac{\left(3 x^{2}+2 a x+b\right)^{2}-8 x^{4}-12 a x^{3}-4 a^{2} x^{2}-8 b x^{2}-4 a b x-8 c x-4 a c}{4 x^{3}+4 a x^{2}+4 b x+4 c}
\end{gathered}
$$

$$
\zeta=\frac{x^{4}-2 b x^{2}-8 c x+b^{2}-4 a c}{4 x^{3}+4 a x^{2}+4 b x+4 c}
$$

Since $f(x)$ and $f^{\prime}(x)$ have no common complex roots, due to the fact that $f(x)$ is nonsingular from assumption, the polynomials with integer coefficients that divide to give ζ have no common complex roots.
Since want to show $h(2 P) \geq 4 h(P)-\kappa$ and $h(P)=h(x), h(2 P)=h(\zeta)$, it suffices to show that $h(\zeta) \geq 4 h(x)-\kappa$. Use the following Lemma to do this.

Lemma: Let $\phi(X)$ and $\psi(X)$ be polynomials with integer coefficients and no common complex roots. Let d be the maximum of the degrees of ϕ and ψ.
(a) There is an integer $R \geq 1$, depending on ϕ and ψ, so that for all rational numbers $\frac{m}{n}$,

$$
\operatorname{gcd}\left(n^{d} \phi\left(\frac{m}{n}\right), n^{d} \psi\left(\frac{m}{n}\right)\right) \quad \text { divides } R .
$$

(b) There are constants κ_{1} and κ_{2}, depending on ϕ and ψ, so that for all rational numbers $\frac{m}{n}$ that are not roots of ψ,

$$
d \cdot h\left(\frac{m}{n}\right)-\kappa_{1} \leq h\left(\frac{\phi(m / n)}{\psi(m / n)}\right) \leq d \cdot h\left(\frac{m}{n}\right)+\kappa_{2}
$$

Proof. (a) Since both ϕ and ψ have degree less than or equal to $d, n^{d} \phi\left(\frac{m}{n}\right)$ and $n^{d} \psi\left(\frac{m}{n}\right)$ are integers which means that their gcd can be determined.
Without loss of generality, assume that ϕ has degree d and ψ has degree $e \leq d$. So

$$
n^{d} \phi\left(\frac{m}{n}\right)=a_{0} m^{d}+a_{1} m^{d-1} n+\cdots+a_{d} n^{d}
$$

and

$$
n^{d} \psi\left(\frac{m}{n}\right)=b_{0} m^{e} n^{d-e}+b_{1} m^{e-1} n^{d-e+1}+\cdots+b_{e} n^{d}
$$

Having no common roots means that $\phi(X)$ and $\psi(X)$ are relatively prime in $\mathbb{Q}[X]$ and generate a unit ideal. So

$$
F(X) \phi(X)+G(X) \psi(X)=1
$$

where $F(X)$ and $G(X)$ are polynomials with coefficients in \mathbb{Q}. Let the maximum degree of these two polynomials be denoted by D. Multiply $F(X)$ and $G(X)$ by large A so that $A F(X)$ and $A G(X)$ have integer coefficients. Substitute in $X=\frac{m}{n}$ and multiply by $A n^{D+d}$ to get

$$
n^{D} A F\left(\frac{m}{n}\right) \cdot n^{d} \phi\left(\frac{m}{n}\right)+n^{D} A G\left(\frac{m}{n}\right) \cdot n^{d} \psi\left(\frac{m}{n}\right)=A n^{D+d}
$$

Suppose $\delta=\operatorname{gcd}\left(n^{d} \phi\left(\frac{m}{n}\right), n^{d} \psi\left(\frac{m}{n}\right)\right)$. Then since $n^{D} A F\left(\frac{m}{n}\right)$ and $n^{D} A G\left(\frac{m}{n}\right)$ are integers, $\delta \mid A n^{D+d}$. The desired result is that $\delta \mid R$ where R doesn't depend on m, n. Thus, look at

$$
A n^{D+d-1} n^{d} \phi\left(\frac{m}{n}\right)=A a_{0} m^{d} n^{D+d-1}+A a_{1} m^{d-1} n^{D+d}+\cdots+A a_{d} n^{D+2 d-1}
$$

Since δ divides $n^{d} \phi\left(\frac{m}{n}\right)$ and $A n^{D+d}$, then δ divides $A a_{0} m^{d} n^{D+d-1}$. So, δ divides
$\operatorname{gcd}\left(A n^{D+d}, A a_{0} m^{d} n^{D+d-1}\right)$. Since $\operatorname{gcd}(m, n)=1, \delta$ divides $A a_{0} n^{D+d-1}$. Iterate this argument with $A n^{D+d-2} n^{d} \phi\left(\frac{m}{n}\right)$ to find δ divides $A a_{0}^{2} n^{D+d-1}$. Continuing this argument results in δ divides $A a_{0}^{D+d}$. Thus, set $R=A a_{0}^{D+d}$ and therefore, $\operatorname{gcd}\left(n^{d} \phi\left(\frac{m}{n}\right), n^{d} \psi\left(\frac{m}{n}\right)\right)$ divides R.
(b) First prove the lower bound. Assume $\frac{m}{n}$ is not a root of ϕ. Again, without loss of generality, assume that ϕ has degree d and ψ has degree $e \leq d$. Say

$$
\zeta=\frac{\phi(m / n)}{\psi(m / n)}=\frac{n^{d} \phi(m / n)}{n^{d} \psi(m / n)}
$$

Then $H(\zeta)=\max \left\{\left|n^{d} \phi(m / n)\right|,\left|n^{d} \psi(m / n)\right|\right\}$. Since there may be common factors, use part (a) to bound $H(\zeta)$ from below. Since $\max \{a, b\} \geq \frac{1}{2}(a+b)$,

$$
\begin{aligned}
& H(\zeta) \geq \frac{1}{R} \max \left\{\left|n^{d} \phi(m / n)\right|,\left|n^{d} \psi(m / n)\right|\right\} \\
& \quad \geq \frac{1}{2 R}\left(\left|n^{d} \phi(m / n)\right|+\left|n^{d} \psi(m / n)\right|\right)
\end{aligned}
$$

Consider

$$
H\left(\frac{m}{n}\right)^{d}=\max \left\{|m|^{d},|n|^{d}\right\}
$$

Now look at the quotient

$$
\begin{aligned}
\frac{H(\zeta)}{H\left(\frac{m}{n}\right)^{d}} & \geq \frac{1}{2 R} \frac{\left|n^{d} \phi(m / n)\right|+\left|n^{d} \psi(m / n)\right|}{\max \left\{|m|^{d},|n|^{d}\right\}} \\
& =\frac{1}{2 R} \frac{|\phi(m / n)|+|\psi(m / n)|}{\max \left\{|(m / n)|^{d}, 1\right\}}
\end{aligned}
$$

Define a function $p(t)$ such that

$$
p(t)=\frac{|\phi(t)|+|\psi(t)|}{\max \left\{|t|^{d}, 1\right\}}
$$

Since the $\phi(t)$ has degree d, the numerator will have a polynomial of degree equal to or greater than the degree of the polynomial in the denominator. Thus, as $|t| \rightarrow \infty, p(t)$ will be a non-zero number. Since $p(t)$ is bounded below, there exists a constant $C_{1}>0$ such that $p(t) \geq C_{1}$ for all t.Thus,

$$
\begin{gathered}
\frac{H(\zeta)}{H\left(\frac{m}{n}\right)^{d}} \geq \frac{1}{2 R} \cdot p\left(\frac{m}{n}\right) \\
H(\zeta) \geq \frac{C_{1}}{2 R} \cdot H\left(\frac{m}{n}\right)^{d}
\end{gathered}
$$

Take logarithm to get

$$
h(\zeta) \geq d h\left(\frac{m}{n}\right)-\kappa_{1} \text { with } \kappa_{1}=\log \frac{2 R}{C_{1}}
$$

Now prove the upper bound. Want to show that

$$
h\left(\frac{\phi(m / n)}{\psi(m / n)}\right) \leq d \cdot h\left(\frac{m}{n}\right)+\kappa_{2}
$$

with κ_{2} depending on ϕ and ψ. Again, take

$$
\zeta=\frac{\phi(m / n)}{\psi(m / n)}=\frac{n^{d} \phi(m / n)}{n^{d} \psi(m / n)}
$$

Since it is not known if this is in lowest terms, the height could be less than $\max \left\{\left|n^{d} \phi(m / n)\right|,\left|n^{d} \psi(m / n)\right|\right\}$. Thus,

$$
\begin{aligned}
H(\zeta) & \leq \max \left\{\left|n^{d} \phi(m / n)\right|,\left|n^{d} \psi(m / n)\right|\right\} \\
& \leq \max \{|\phi(m / n)|,|\psi(m / n)|\}\left|n^{d}\right|
\end{aligned}
$$

Consider

$$
H\left(\frac{m}{n}\right)^{d}=\max \left\{|m|^{d},|n|^{d}\right\}
$$

Now look at the quotient

$$
\begin{gathered}
\frac{H(\zeta)}{H\left(\frac{m}{n}\right)^{d}} \leq \frac{\max \{|\phi(m / n)|,|\psi(m / n)|\}\left|n^{d}\right|}{\max \left\{|m|^{d},|n|^{d}\right\}} \\
\quad \leq \max \{|\phi(m / n)|,|\psi(m / n)|\}
\end{gathered}
$$

This is true because if $\max \left\{|m|^{d},|n|^{d}\right\}=|n|^{d}$, then $\frac{|n|^{d}}{|n|^{d}}=1$. If $\max \left\{|m|^{d},|n|^{d}\right\}=|m|^{d}$, then $\frac{|n|^{d}}{|m|^{d}} \leq 1$. So,

$$
H(\zeta) \leq H\left(\frac{m}{n}\right)^{d} \cdot \max \{|\phi(m / n)|,|\psi(m / n)|\}
$$

Take logarithm

$$
h(\zeta) \leq d h\left(\frac{m}{n}\right)+\kappa_{2} \text { with } \kappa_{2}=\log (\max \{|\phi(m / n)|,|\psi(m / n)|\})
$$

To finish the proof for Lemma 3, see that from the previous Lemma, $h(\zeta) \geq d h\left(\frac{m}{n}\right)-\kappa_{1}$ with κ_{1} depending on ϕ and ψ. Since the maximum degree of the polynomials in the numerator and denominator of ζ is 4 , can substitute to get

$$
h(\zeta) \geq 4 h\left(\frac{m}{n}\right)-\kappa_{1}
$$

Also use that $h(P)=h(x)=h(m / n), h(2 P)=h(\zeta)$, and the fact that the polynomials in the numerator and denominator of ζ depend on a, b, c to get $h(P)=h(x), h(2 P)=h(\zeta)$ which is the desired product.

Lemma 4: The index $[C(\mathbb{Q}): 2 C(\mathbb{Q})]$ is finite.
In order to fully prove Lemma 4, need to consider both the reducible and irreducible cases. Only the proof of the reducible case will be given. The Reducible Case:

This case considers when $C: y^{2}=f(x)$ is reducible, meaning $f(x)$ has at least one rational root or at least one rational point of order two. For simplicity, define $\Gamma=C(\mathbb{Q})$. Suppose x_{0} is a rational root of $f(x)$. Then, if $f(x)$ is replaced with $f\left(x-x_{0}\right)$, then it can be assumed that $f(x)=x^{3}+a x^{2}+b x$ with integer coefficients. Since this change of coordinates takes $\left(x_{0}, 0\right)$ to $(0,0)=T$, then T is a rational point on C such that $2 T=\mathcal{O}$.

Since the index $[\Gamma: 2 \Gamma]$, or equivalently the order of the group $\Gamma / 2 \Gamma$, is of interest, want to look at a map from $C \rightarrow C$ such that $P \mapsto 2 P$ where P is a rational point on C. Instead of trying to determine one operation that gives this result, look at the composition of two different operations, one from $C \rightarrow \bar{C}$ and the other from $\bar{C} \rightarrow C$ where \bar{C} is a curve defined as

$$
\bar{C}: y^{2}=x^{3}+\bar{a} x^{2}+\bar{b} x
$$

with

$$
\bar{a}=-2 a \text { and } \bar{b}=a^{2}-4 b
$$

Consider

$$
\overline{\bar{C}}: y^{2}=x^{3}+\overline{\bar{a}} x^{2}+\overline{\bar{b}} x
$$

with

$$
\overline{\bar{a}}=-2 \bar{a}=4 a \text { and } \overline{\bar{b}}=\bar{a}^{2}-4 \bar{b}=4 a-4\left(a^{2}-4 b\right)=16 b
$$

So,

$$
\overline{\bar{C}}: y^{2}=x^{3}+4 a x^{2}+16 b x
$$

This means that $\overline{\bar{C}}$ is isomorphic to C with the map $(x, y) \mapsto\left(\frac{1}{4} x, \frac{1}{8} y\right)$ and so $\Gamma \cong \overline{\bar{\Gamma}}$.
The following proposition will prove that specific maps from $C \rightarrow \bar{C}$ and $\bar{C} \rightarrow C$ are homomorphisms that will be useful in proving Lemma 4.
Proposition: Let C and \bar{C} be elliptic curves given by the equations

$$
C: y^{2}=x^{3}+a x^{2}+b x \text { and } \bar{C}: y^{2}=x^{3}+\bar{a} x^{2}+\bar{b} x
$$

where

$$
\bar{a}=-2 a \text { and } \bar{b}=a^{2}-4 b .
$$

Let $T=(0,0) \in C$.
(a) There is a homomorphism $\phi: C \rightarrow \bar{C}$ defined by:

$$
\phi(P)= \begin{cases}\left(\frac{y^{2}}{x^{2}}, \frac{y\left(x^{2}-b\right)}{x^{2}}\right), & \text { if } P=(x, y) \neq \mathcal{O}, T \\ \overline{\mathcal{O}}, & \text { if } P=\mathcal{O} \text { or } P=T\end{cases}
$$

The kernel of ϕ is $\{\mathcal{O}, T\}$.
(b) There is a homomorphism $\psi: \bar{C} \rightarrow C$ defined by:

$$
\psi(\bar{P})= \begin{cases}\left(\frac{\bar{y}^{2}}{\bar{x}^{2}}, \frac{\bar{y}\left(\bar{x}^{2}-\bar{b}\right)}{\bar{x}^{2}}\right), & \text { if } \bar{P}=(x, y) \neq \overline{\mathcal{O}}, \bar{T} \\ \mathcal{O}, & \text { if } \bar{P}=\overline{\mathcal{O}} \text { or } \bar{P}=\bar{T}\end{cases}
$$

(c) Define $h: \overline{\bar{C}} \rightarrow C$ with the map $(x, y) \mapsto\left(\frac{1}{4} x, \frac{1}{8} y\right)$. Now say $\bar{\phi}=h \circ \psi$. The composition $\psi \circ \phi: C \rightarrow C$ is the multiplication by two map,

$$
\bar{\phi} \circ \phi(P)=2 P
$$

Proof. (a) First, need to check that this map is well defined. Thus, need to ensure that $\bar{P}=(\bar{x}, \bar{y})$ satisfies \bar{C}.

$$
\begin{gathered}
\bar{x}^{3}+\bar{a} \bar{x}^{2}+\bar{b} \bar{x}=\bar{x}\left(\bar{x}^{2}-2 a \bar{x}+\left(a^{2}-4 b\right)\right) \\
=\frac{y^{2}}{x^{2}}\left(\frac{y^{4}}{x^{4}}-2 a \frac{y^{2}}{x^{2}}+\left(a^{2}-4 b\right)\right) \\
=\frac{y^{2}}{x^{2}}\left(\frac{y^{4}-2 a y^{2} x^{2}+\left(a^{2}-4 b\right)\left(x^{4}\right)}{x^{4}}\right) \\
=\frac{y^{2}}{x^{2}}\left(\frac{\left(y^{2}-a x^{2}\right)^{2}-4 b x^{4}}{x^{4}}\right) \\
=\frac{y^{2}}{x^{6}}\left(\left(x^{3}+b x\right)^{2}-4 b x^{4}\right) \\
=\left(\frac{y\left(x^{2}-b\right)}{x^{2}}\right)^{2}=\bar{y}
\end{gathered}
$$

Now, need to show that ϕ is a homomorphism which amounts to proving that

$$
\phi\left(P_{1}+P_{2}\right)=\phi\left(P_{1}\right)+\phi\left(P_{2}\right) \text { for all } P_{1}, P_{2} \text { on } C
$$

If P_{1} or P_{2} is \mathcal{O}, then assuming $P_{1}=\mathcal{O}$ without loss of generality,

$$
\phi\left(P_{1}+P_{2}\right)=\phi\left(\mathcal{O}+P_{2}\right)=\phi\left(P_{2}\right)=\overline{\mathcal{O}}+\phi\left(P_{2}\right)=\phi(\mathcal{O})+\phi\left(P_{2}\right)
$$

If P_{1} or P_{2} is T, then assuming $P_{1}=T$ without loss of generality, need to show that $\phi(T+P)=$ $\phi(P)$. Since P is a point (x, y),

$$
P+T=(x, y)+(0,0)=\left(\frac{b}{x},-\frac{b y}{x^{2}}\right)
$$

Now, write $P+T$ as

$$
P+T=(x(P+T), y(P+T)) \text { and } \phi(P+T)=(\bar{x}(P+T), \bar{y}(P+T))
$$

Thus,

$$
\begin{gathered}
\bar{x}(P+T)=\left(\frac{y(P+T)}{x(P+T)}\right)^{2}=\left(\frac{-b y / x^{2}}{(b / x)}\right)^{2}=\frac{y^{2}}{x^{2}}=\bar{x}(P) \\
\bar{y}(P+T)=\left(\frac{y(P+T)\left(x(P+T)^{2}-b\right)}{(x(P+T))^{2}}\right)=\left(\frac{\left(-b y / x^{2}\right)\left((b / x)^{2}-b\right)}{(b / x)^{2}}\right)=\bar{y}(P)
\end{gathered}
$$

Hence, by this argument, $\phi(T+P)=\phi(P)$ unless $P=T$. Then,

$$
\phi(T+T)=\phi(\mathcal{O})=\overline{\mathcal{O}}=\overline{\mathcal{O}}+\overline{\mathcal{O}}=\phi(T)+\phi(T)
$$

Now need to show that ϕ takes negatives to negatives. Since $-P=-(x, y)=(x,-y)$,

$$
\phi(-P)=\phi(x,-y)=\left(\left(\frac{-y}{x}\right)^{2}, \frac{-y\left(x^{2}-b\right)}{x^{2}}\right)=-\phi(x, y)=-\phi(P)
$$

Thus, all that is left to show is that $P_{1}+P_{2}+P_{3}=\mathcal{O}$ implies that $\phi\left(P_{1}\right)+\phi\left(P_{2}\right)+\phi\left(P_{3}\right)=\overline{\mathcal{O}}$ where P_{1}, P_{2}, P_{3} are not \mathcal{O} or T. The equation $P_{1}+P_{2}+P_{3}=\mathcal{O}$ is equvalent to saying that P_{1}, P_{2}, P_{3} lie on a line that intersects C. Suppose the equation for that line is given by
$y=\lambda x+\nu$. Want to show that there is line intersecting \bar{C} at the points $\phi\left(P_{1}\right), \phi\left(P_{2}\right), \phi\left(P_{3}\right)$. Suppose that a line that intersects \bar{C} is given by

$$
y=\bar{\lambda} x+\bar{\nu}
$$

where

$$
\bar{\lambda}=\frac{\nu \lambda-b}{\nu} \text { and } \bar{\nu}=\frac{\nu^{2}-a \nu \lambda+b \lambda^{2}}{\nu}
$$

Thus, need to check that the points $\phi\left(P_{1}\right), \phi\left(P_{2}\right), \phi\left(P_{3}\right)$ lie on this line.
First check that $\phi\left(P_{1}\right)=\phi\left(x_{1}, y_{1}\right)=\left(\overline{x_{1}}, \overline{y_{1}}\right)$ is on the line.

$$
\begin{gathered}
\bar{\lambda} \overline{x_{1}}+\bar{\nu}=\frac{\nu \lambda-b}{\nu}\left(\frac{y_{1}^{2}}{x_{1}^{2}}\right)+\frac{\nu^{2}-a \nu \lambda+b \lambda^{2}}{\nu} \\
=\frac{y_{1}^{2}(\nu \lambda-b)+x_{1}^{2}\left(\nu^{2}-a \nu \lambda+b \lambda^{2}\right)}{\nu x_{1}^{2}} \\
=\frac{\left(y_{1}^{2}-x_{1}^{2} a\right) \nu \lambda+\left(x_{1}^{2} \lambda^{2}-y_{1}^{2}\right) b+x_{1}^{2} \nu^{2}}{\nu x_{1}^{2}} \\
=\frac{\left(x_{1}^{3}+b x_{1}\right) \nu \lambda+\left(x_{1} \lambda-y_{1}\right)\left(x_{1} \lambda+y_{1}\right) b+x_{1}^{2} \nu^{2}}{\nu x_{1}^{2}} \\
=\frac{\left.\left(x_{1}^{3}+b x_{1}\right) \nu \lambda+(-\nu)\left(x_{1}\right) \lambda-y_{1}\right) b+x_{1}^{2} \nu^{2}}{\nu x_{1}^{2}} \\
\left.x_{1} \lambda+y_{1}\right) b+x_{1}^{2} \nu \\
=\frac{x_{1}^{2}\left(x_{1} \lambda+\nu\right)-y_{1} b}{x_{1}^{2}} \\
=\frac{y_{1}\left(x_{1}^{2}-b\right)}{x_{1}^{2}} \\
\overline{y_{1}}
\end{gathered}
$$

The same is true for $\phi\left(P_{2}\right)$ and $\phi\left(P_{3}\right)$.
To give the complete proof that this is a homomorphism, would need to show that $\bar{x}\left(P_{1}\right), \bar{x}\left(P_{2}\right), \bar{x}\left(P_{3}\right)$ are the roots of the equation $(\bar{\lambda} x+\bar{\nu})^{2}-\bar{f}(x)=0$.

The kernel of ϕ is very clearly $\{\mathcal{O}, T\}$ since these are the only two elements that map to $\overline{\mathcal{O}}$.
(b) Using part (a), a homomorphism $\bar{\phi}: \bar{C} \rightarrow \overline{\bar{C}}$ can be defined by the same equations for ϕ, just adding bars over a and b. Since $\overline{\bar{C}} \rightarrow C$ is an isomorphism, $\psi: \bar{C} \rightarrow C$ can be written as composition of $\bar{\phi}$ with this isomorphism to give a well defined homomorphism.
(c) Need to show that the composition map $\bar{\phi} \circ \phi$ gives a multiplication by two map. The duplication formula for a point P is given by

$$
2 P=2(x, y)=\left(\frac{\left(x^{2}-b\right)^{2}}{4 y^{2}}, \frac{\left(x^{2}-b\right)\left(x^{4}+2 a x^{3}+6 b x^{2}+2 a b x+b^{2}\right)}{8 y^{3}}\right)
$$

So,

$$
\begin{aligned}
& \bar{\phi} \circ \phi(P)=\bar{\phi} \circ \phi(x, y)=\bar{\phi}\left(\frac{y^{2}}{x^{2}}, \frac{y\left(x^{2}-b\right)}{x^{2}}\right) \\
& =\left(\frac{\left(\frac{y\left(x^{2}-b\right)}{x^{2}}\right)^{2}}{\left(\frac{y^{2}}{x^{2}}\right)^{2}}, \frac{\frac{y\left(x^{2}-b\right)}{x^{2}}\left(\left(\frac{y^{2}}{x^{2}}\right)^{2}-\left(a^{2}-4 b\right)\right)}{\left(\frac{y^{2}}{x^{2}}\right)^{2}}\right) \\
& =\left(\frac{\left(x^{2}-b\right)^{2}}{y^{2}}, \frac{\left(x^{2}-b\right)\left(y^{4}-\left(a^{2}-4 b\right) x^{4}\right)}{y^{3} x^{2}}\right)
\end{aligned}
$$

Since $y^{2}=x^{3}+a x^{2}+b x=x\left(x^{2}+a x+b\right), y^{4}=x^{2}\left(x^{2}+a x+b\right)^{2}$ and so

$$
\begin{gathered}
=\left(\frac{\left(x^{2}-b\right)^{2}}{y^{2}}, \frac{\left(x^{2}-b\right)\left(x^{2}\left(x^{2}+a x+b\right)^{2}-\left(a^{2}-4 b\right) x^{4}\right)}{y^{3} x^{2}}\right) \\
=\left(\frac{\left(x^{2}-b\right)^{2}}{y^{2}}, \frac{\left(x^{2}-b\right)\left(\left(x^{2}+a x+b\right)^{2}-\left(a^{2}-4 b\right) x^{2}\right)}{y^{3}}\right) \\
=\left(\frac{\left(x^{2}-b\right)^{2}}{y^{2}}, \frac{\left(x^{2}-b\right)\left(x^{4}+2 a x^{3}+6 b x^{2}+2 a b x+b^{2}\right)}{y^{3}}\right) \\
=2\left(\frac{x}{4}, \frac{y}{8}\right)=2 P
\end{gathered}
$$

To show that $\phi \circ \bar{\phi}(\bar{P})=2(\bar{P})$, use that since ϕ is a homomorphism,

$$
\phi(2 P)=\phi(P+P)=\phi(P)+\phi(P)=2 \phi(P)
$$

Thus,

$$
\phi \circ \bar{\phi}(\bar{P})=\phi \circ \bar{\phi}(\phi(P))=\phi(2 P)=2 \phi(P)
$$

The above argument only works when x and y are not zero. Thus, need to check points of order 2 .

$$
\begin{aligned}
& \bar{\phi} \circ \phi(T)=\bar{\phi}(\overline{\mathcal{O}})=\mathcal{O} \\
& \bar{\phi} \circ \phi(\mathcal{O})=\bar{\phi}(\overline{\mathcal{O}})=\mathcal{O}
\end{aligned}
$$

Therefore, $\bar{\phi} \circ \phi$ is a multiplication by two map.

The description of the homomorphism ϕ shows that ϕ maps $\Gamma \rightarrow \bar{\Gamma}$. It is not obvious that a given rational point in $\bar{\Gamma}$ comes from a rational point in Γ. Thus, need to look at the image of ϕ. Denote the subgroup of rational points in $\bar{\Gamma}$ obatined by applying ϕ to Γ as $\phi(\Gamma)$.

Claim:

(i) $\overline{\mathcal{O}} \in \phi(\Gamma)$
(ii) $\bar{T}=(0,0) \in \phi(\Gamma)$ if and only if $\bar{b}=a^{2}-4 b$ is a perfect square.
(iii) Let $\bar{P}=(\bar{x}, \bar{y}) \in \bar{\Gamma}$ with $\bar{x} \neq 0$. Then $\bar{P} \in \phi(\Gamma)$ if and only if \bar{x} is the square of a rational number.

Proof. (i) Since $\phi(\mathcal{O})=\overline{\mathcal{O}}$ and $\mathcal{O} \in \Gamma, \overline{\mathcal{O}} \in \phi(\Gamma)$.
(ii) In order for $\bar{T}=(0,0) \in \phi(\Gamma)$, need to find a point P in Γ such that $\bar{x}(P)=\frac{y^{2}}{x^{2}}=0$. If $x=0$, then $P=T=(0,0)$. This can not be the case because $\phi(T)=\overline{\mathcal{O}}$ and not \bar{T}. Thus, need to find a point in Γ such that $y=0$

$$
0=x^{3}+a x^{2}+b x=x\left(x^{2}+a x+b\right)
$$

The case where $x=0$ has already been ruled out. Thus, look at the case where $0=x^{2}+a x+b$. By the quadratic formula, this equation has a non-zero rational root if and only if $a^{2}-4 b$ is a perfect square.
(iii) Suppose $\bar{P}=(\bar{x}, \bar{y}) \in \bar{\Gamma}$ with $\bar{x} \neq 0$ and $\bar{P} \in \phi(\Gamma)$. Then $\bar{x}=\frac{y^{2}}{x^{2}}$ so \bar{x} is the square of a rational number.
Now suppose $\bar{P}=(\bar{x}, \bar{y}) \in \bar{\Gamma}$ with $\bar{x} \neq 0$ and $\bar{x}=w^{2}$ where w is a rational number. Need to find a point in Γ that is mapped to $\bar{P}=(\bar{x}, \bar{y})$. Since \mathcal{O} and T are in the kernel of ϕ, if (\bar{x}, \bar{y}) is in $\phi(\Gamma)$ then the points $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ map to (\bar{x}, \bar{y}) where

$$
\begin{aligned}
x_{1} & =\frac{1}{2}\left(w^{2}-a+\frac{\bar{y}}{w}\right), & y_{1} & =x_{1} w \\
x_{2} & =\frac{1}{2}\left(w^{2}-a-\frac{\bar{y}}{w}\right), & y_{2} & =-x_{2} w
\end{aligned}
$$

Since $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ are rational points, just need to show that $P_{i}=\left(x_{i}, y_{i}\right) \in$ C for $i=1,2$ and $\phi\left(P_{i}\right)=(\bar{x}, \bar{y})$. To show that P_{i} is on C, need to show that

$$
\overline{x_{i}}=x_{i}+a+\frac{b}{x_{i}}=\frac{y_{i}^{2}}{x_{i}^{2}}
$$

Want to get b in terms of x_{i}. It turns out that

$$
\begin{gathered}
x_{1} x_{2}=\frac{1}{4}\left(\left(w^{2}-a\right)-\frac{\overline{y^{2}}}{w^{2}}\right) \\
=\frac{1}{4}\left((\bar{x}-a)-\frac{\overline{y^{2}}}{\bar{x}}\right) \\
=\frac{1}{4}\left(\frac{\bar{x}^{3}-2 a \bar{x}^{2}+a^{2}-\overline{y^{2}}}{\bar{x}}\right) \\
=\frac{1}{4}\left(\frac{\bar{y}^{2}+4 b \bar{x}-\overline{y^{2}}}{\bar{x}}\right) \\
=b
\end{gathered}
$$

This combined with the fact that $\frac{y_{i}}{x_{i}}= \pm w$ from the definitions of y_{1} and y_{2} gives

$$
\frac{y_{i}^{2}}{x_{i}^{2}}=x_{i}+a+\frac{b}{x_{i}} \Leftrightarrow w^{2}=x_{1}+a+x_{2}
$$

Thus, it suffices to show that $w^{2}=x_{1}+a+x_{2}$ is true. Using the definitions of x_{1} and x_{2},

$$
\begin{gathered}
x_{1}+a+x_{2}=\frac{1}{2}\left(w^{2}-a+\frac{\bar{y}}{w}\right)+a+\frac{1}{2}\left(w^{2}-a-\frac{\bar{y}}{w}\right) \\
=\frac{1}{2}\left(w^{2}-a+\frac{\bar{y}}{w}+w^{2}-a-\frac{\bar{y}}{w}\right)+a
\end{gathered}
$$

$$
=w^{2}
$$

Now all that is left to show is for $i=1,2$ and $\phi\left(P_{i}\right)=(\bar{x}, \bar{y})$. Thus, need to show

$$
\frac{y_{i}^{2}}{x_{i}^{2}}=\bar{x} \text { and } \frac{y_{i}\left(x_{i}^{2}-b\right)}{x_{i}^{2}}=\bar{y}
$$

Since $\frac{y_{i}}{x_{i}}= \pm w$ and $\bar{x}=w^{2}$,

$$
\frac{y_{i}^{2}}{x_{i}^{2}}=w^{2}=\bar{x}
$$

Now, use $b=x_{1} x_{2}$ and definitions of y_{1}, x_{1}, y_{2}, and x_{2} to show $\frac{y_{i}\left(x_{i}^{2}-b\right)}{x_{i}^{2}}=\bar{y}$.

$$
\begin{aligned}
& \frac{y_{1}\left(x_{1}^{2}-b\right)}{x_{1}^{2}}=\frac{x_{1} w\left(x_{1}^{2}-x_{1} x_{2}\right)}{x_{1}^{2}}=w\left(x_{1}-x_{2}\right)=w\left(\frac{1}{2}\left(w^{2}-a+\frac{\bar{y}}{w}\right)-\frac{1}{2}\left(w^{2}-a-\frac{\bar{y}}{w}\right)\right)=\bar{y} \\
& \frac{y_{2}\left(x_{2}^{2}-b\right)}{x_{2}^{2}}=\frac{-x_{2} w\left(x_{2}^{2}-x_{1} x_{2}\right)}{x_{2}^{2}}=w\left(x_{1}-x_{2}\right)=w\left(\frac{1}{2}\left(w^{2}-a+\frac{\bar{y}}{w}\right)-\frac{1}{2}\left(w^{2}-a-\frac{\bar{y}}{w}\right)\right)=\bar{y}
\end{aligned}
$$

If it can be shown that the indices $(\bar{\Gamma}: \phi(\Gamma))$ and $(\Gamma: \psi(\bar{\Gamma}))$ are finite, the fact that $(\Gamma: 2 \Gamma)$ is finite will follow. It will be enough to prove that one of these indicies is finite.

Proposition: Let \mathbb{Q}^{*} be the multiplicative group of non-zero rational numbers and let $\mathbb{Q}^{* 2}$ denote the group of squares of elements of \mathbb{Q}^{*} such that

$$
\mathbb{Q}^{* 2}=\left\{u^{2}: u \in \mathbb{Q}^{*}\right\}
$$

Define a map $\alpha: \Gamma \rightarrow \mathbb{Q}^{*} / \mathbb{Q}^{* 2}$ as follows:

$$
\alpha(P)=\left\{\begin{array}{lll}
1 & \bmod \mathbb{Q}^{* 2} & \text { if } P=\mathcal{O} \\
b & \bmod \mathbb{Q}^{* 2} & \text { if } P=T \\
x & \bmod \mathbb{Q}^{* 2} & \text { if } P=(x, y), x \neq 0
\end{array}\right.
$$

(a) The map $\alpha: \Gamma \rightarrow \mathbb{Q}^{*} / \mathbb{Q}^{* 2}$ described above is a homomorphism.
(b) The kernel of α is the image $\psi(\bar{\Gamma})$. Hence α induces a one-to-one homomorphism

$$
\Gamma / \psi(\bar{\Gamma}) \hookrightarrow \mathbb{Q}^{*} / \mathbb{Q}^{* 2}
$$

(c) Let $p_{1}, p_{2}, \ldots, p_{t}$ be the distinct primes dividing b. Then the image of α is contained in the subgroup of $\mathbb{Q}^{*} / \mathbb{Q}^{* 2}$ consisting of the elements

$$
\left\{ \pm p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{t}^{e_{t}}: \text { each } e_{i} \text { equals } 0 \text { or } 1\right\}
$$

(d) The index $(\Gamma: \psi(\bar{\Gamma}))$ is at most 2^{t+1}.

Proof. (a) Need to show that α is a homomorphism which amounts to proving that

$$
\alpha\left(P_{1}+P_{2}\right)=\alpha\left(P_{1}\right) \alpha\left(P_{2}\right) \text { for all } P_{1}, P_{2} \in \Gamma
$$

If P_{1} or P_{2} is \mathcal{O}, then assuming $P_{1}=\mathcal{O}$ without loss of generality,

$$
\alpha\left(P_{1}+P_{2}\right)=\alpha\left(\mathcal{O}+P_{2}\right)=\alpha\left(P_{2}\right)=1 \cdot \alpha\left(P_{2}\right)=\alpha(\mathcal{O}) \alpha\left(P_{2}\right)
$$

If P_{1} or P_{2} is T, then assuming $P_{1}=T$ without loss of generality, need to show that $\alpha(T+P)=$ $b \cdot \alpha(P)=b \cdot x$. Since P is a point (x, y),

$$
P+T=(x, y)+(0,0)=\left(\frac{b}{x},-\frac{b y}{x^{2}}\right)
$$

Then,

$$
\alpha(P+T)=\frac{b}{x}
$$

Since $\alpha(P)=x=\frac{1}{x} \cdot x^{2} \equiv \frac{1}{x} \bmod \mathbb{Q}^{* 2}$,

$$
\alpha(P+T)=\frac{b}{x}=b \cdot \frac{1}{x}=\alpha(T) \cdot \alpha(P)
$$

Hence, by this argument, $\alpha(T+P)=\alpha(T) \cdot \alpha(P)$ unless $P=T$. Since $\alpha(T)=b=\frac{1}{b} \cdot b^{2} \equiv \frac{1}{b}$ $\bmod \mathbb{Q}^{* 2}$, then

$$
\alpha(T+T)=\alpha(\mathcal{O})=1=\frac{b}{b}=b \cdot \frac{1}{b}=\alpha(T) \cdot \alpha(T)
$$

Now need to show that α takes negatives to negatives. Since $-P=-(x, y)=(x,-y)$,

$$
\alpha(-P)=\alpha(x,-y)=x=x^{2} \cdot \frac{1}{x} \equiv \frac{1}{x} \quad \bmod \mathbb{Q}^{* 2}=\frac{1}{\alpha(x, y)}=\alpha(P)^{-1} \quad \bmod \mathbb{Q}^{* 2}
$$

Thus, all that is left to show is that $P_{1}+P_{2}+P_{3}=\mathcal{O}$ implies that $\alpha\left(P_{1}\right) \alpha\left(P_{2}\right) \alpha\left(P_{3}\right) \equiv 1$ $\bmod \mathbb{Q}^{* 2}$ where P_{1}, P_{2}, P_{3} are not \mathcal{O} or T. The equation $P_{1}+P_{2}+P_{3}=\mathcal{O}$ is equvalent to saying that P_{1}, P_{2}, P_{3} lie on a line that intersects C. Suppose the equation for that line is given by $y=\lambda x+\nu$, and the intersection points have x -coordinates x_{1}, x_{2}, x_{3}. These x -coordinates are roots of the equation

$$
x^{3}+\left(a-\lambda^{2}\right) x^{2}+(b-2 \lambda \nu) x+\left(c-\nu^{2}\right)=0
$$

Therefore,

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}=\lambda^{2}-a \\
x_{1} x_{2}+x_{2} x_{3}+x_{2} x_{3}=b-2 \lambda \nu \\
x_{1} x_{2} x_{3}=\nu^{2}-c
\end{gathered}
$$

Since $c=0, x_{1} x_{2} x_{3}=\nu^{2} \equiv 1 \bmod \mathbb{Q}^{* 2}$. Hence $\alpha\left(P_{1}\right) \alpha\left(P_{2}\right) \alpha\left(P_{3}\right) x_{1} x_{2} x_{3}=\nu^{2} \equiv 1 \bmod \mathbb{Q}^{* 2}$.
(b) From the Claim, $\psi(\bar{\Gamma})=\left\{(x, y) \in \Gamma: x \in \mathbb{Q}^{2 *}\right\} \cup\{\mathcal{O}\} \cup\{T\}$ (if b is a square). Thus, for every point P in $\left\{(x, y) \in \Gamma: x \in \mathbb{Q}^{2 *}\right\}, \alpha(P)=1 \bmod \mathbb{Q}^{* 2}$ since x is a square. By definition, $\alpha(\mathcal{O})=1 \bmod \mathbb{Q}^{* 2}$. Since $\alpha(T)=b \bmod \mathbb{Q}^{* 2}$, if b is a square, $\alpha(T)=1 \bmod \mathbb{Q}^{* 2}$. Thus, the kernel of α is $\psi(\bar{\Gamma})$.
(c) Need to determine what rational numbers can be the x-coordinate of a point in Γ. It is known that $x=\frac{m}{e^{2}}$ and $y=\frac{n}{e^{3}}$. Then,
$y^{2}=x^{3}+a x^{2}+b x \Leftrightarrow{\frac{n}{e^{3}}}^{2}={\frac{m}{e^{2}}}^{3}+a{\frac{m}{e^{2}}}^{2}+b \frac{m}{e^{2}} \Leftrightarrow n^{2}=m^{3}+a m^{2} e^{2}+b m e^{4}=m\left(m^{2}+a m e^{2}+b e^{4}\right)$
This equation expresses a square as the product of two integers. Let $d=\operatorname{gcd}\left(m, m^{2}+a m e^{2}+\right.$ $b e^{4}$). Since d divides m and $m^{2}+a m e^{2}+b e^{4}, d$ must divide $b e^{4}$. Since the assumption is
that m and e are relatively prime, then d divides b. Thus, every prime that divides m is of even power except for perhaps primes that divide b. Thus, $\alpha(P)=x=\frac{m}{e^{2}} \equiv \pm p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{t}^{e_{t}}$ $\bmod \mathbb{Q}^{* 2}$ where each e_{i} equals 0 or 1.
(d) The subgroup $\left\{ \pm p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{t}^{e_{t}}\right.$: each e_{i} equals 0 or 1$\}$ has exactly 2^{t+1} elements where t is the number of distinct primes dividing b. Since $\Gamma / \psi(\bar{\Gamma})$ maps one-to-one with the subgroup, the index $(\Gamma: \psi(\bar{\Gamma}))$ is at most 2^{t+1}.
The proof for the finiteness of the index $(\Gamma: \psi(\bar{\Gamma}))$ is the same except putting bars on everything.

Lemma: Let A and B be abelian groups, and supppose that $\phi: A \rightarrow B$ and $\psi: B \rightarrow A$ are homomorphisms satisfying

$$
\psi \circ \phi(a)=2 a \quad \text { for all } a \in A \quad \text { and } \quad \phi \circ \psi(b)=2 b \quad \text { for all } b \in B
$$

Suppose further that $\phi(A)$ has finite index in B and $\psi(B)$ has finite index in A. Then $2 A$ has finite index in A. More precisesly, the indicies satisfy

$$
(A: 2 A) \leq(A: \psi(B))(B: \phi(A))
$$

Proof. Since $\phi(A)$ has finite index in B and $\psi(B)$ has finite index in A, there are elements $b_{1}, \ldots, b_{n} \in B$ that represent the cosets $\phi(A)$ in B and elements $a_{1}, \ldots, a_{n} \in A$ that represent the cosets $\psi(B)$ in A. Thus, can find $b \in b_{i}+\phi(A)$ for some $1 \leq i \leq n$ and $a \in a_{j}+\psi(B)$ for some $1 \leq j \leq m$. Suppose $b=b_{i}+\phi\left(a^{\prime}\right)$ for some $1 \leq i \leq n$ and $a^{\prime} \in A$ and $a=a_{j}+\psi(b)$ for some $1 \leq j \leq m$ and $b \in B$. Then,

$$
\begin{gathered}
a=a_{j}+\psi(b) \\
=a_{j}+\psi\left(b_{i}+\phi\left(a^{\prime}\right)\right) \\
=a_{j}+\psi\left(b_{i}\right)+\psi\left(\phi\left(a^{\prime}\right)\right) \\
=a_{j}+\psi\left(b_{i}\right)+2 a^{\prime}
\end{gathered}
$$

Therefore, a can be written as the sum of an element in the set $\left\{a_{j}+\psi\left(b_{i}\right) \mid 1 \leq j \leq m, 1 \leq\right.$ $i \leq n\}$ and an element in $2 A$ which implies that the set $\left\{a_{j}+\psi\left(b_{i}\right) \mid 1 \leq j \leq m, 1 \leq i \leq n\right\}$ contains all of the representatives of cosets of $2 A$ in A. Thus, $2 A$ has a finite index in A.

Notice that if $A=\Gamma$ and $B=\bar{\Gamma}$, the index $[\Gamma: 2 \Gamma]$ is finite. Thus, $[C(\mathbb{Q}): 2 C(\mathbb{Q})]$ is finite. Mordell's Theorem: Let C be a non-singular cubic curve given by an equation

$$
C: y^{2}=x^{3}+a x^{2}+b x
$$

where a and b are integers. Then the group of rational points $C(\mathbb{Q})$ is a finitely generated abelian group.

Proof. Let $Q_{1}, Q_{2}, \ldots, Q_{n}$ be representatives for the cosets in $\Gamma / 2 \Gamma$. For all points P in Γ, there exsists i_{1} depending on P such that $P-Q_{i_{1}} \in 2 \Gamma$. Since P is in one of the cosets, say $P-Q_{i_{1}}=2 P_{1}$ for $P_{1} \in \Gamma$. Iterating this process shows that for $Q_{i_{1}}, \ldots, Q_{i_{m}} \in$ $\left\{Q_{1}, Q_{2}, \ldots, Q_{n}\right\}$ and $P_{1}, \ldots, P_{m} \in \Gamma$,

$$
P_{1}-Q_{i_{2}}=2 P_{2}
$$

$$
\begin{gathered}
P_{2}-Q_{i_{3}}=2 P_{3} \\
\ldots \\
P_{m-1}-Q_{i_{m}}=2 P_{m}
\end{gathered}
$$

Now, rearranging and substituting the equations gives

$$
P=Q_{i_{1}}+2 P_{1}=Q_{i_{1}}+2 Q_{i_{2}}+4 P_{2}=\ldots Q_{i_{1}}+2 Q_{i_{2}}+4 Q_{i_{3}}+\cdots+2^{m-1} Q_{i_{m}}+2^{m} P_{m}
$$

Applying Lemma 2 and replacing P_{0} with $-Q_{i}$ gives

$$
h\left(P-Q_{i}\right) \leq 2 h(P)+\kappa_{i}
$$

for all $P \in \Gamma$. Do this for each $Q_{1}, Q_{2}, \ldots, Q_{n}$. Take $\kappa^{\prime}:=\max \left\{\kappa_{1}, \ldots, \kappa_{n}\right\}$. This can be done due to Lemma 4 which says that there are finitely many $Q_{i}^{\prime} s$. Then,

$$
h\left(P-Q_{i}\right) \leq 2 h(P)+\kappa^{\prime}
$$

for all $P \in \Gamma$ with $1 \leq i \leq n$. Now use Lemma 3 .

$$
\begin{gathered}
h\left(2 P_{j}\right) \geq 4 h\left(P_{j}\right)-\kappa \\
\Leftrightarrow 4 h\left(P_{j}\right) \leq h\left(2 P_{j}\right)+\kappa \\
=h\left(P_{j-1}-Q_{i_{j}}\right)+\kappa \\
\leq 2 h\left(P_{j-1}\right)+\kappa^{\prime}+\kappa \\
\Leftrightarrow h\left(P_{j}\right) \leq \frac{h\left(P_{j-1}\right)}{2}+\frac{\kappa^{\prime}+\kappa}{4} \\
=\frac{3 h\left(P_{j-1}\right)}{4}-\frac{h\left(P_{j-1}\right)-\left(\kappa^{\prime}+\kappa\right)}{4}
\end{gathered}
$$

If $h\left(P_{j-1}\right) \geq \kappa^{\prime}+\kappa$,

$$
h\left(P_{j}\right) \leq \frac{3 h\left(P_{j-1}\right)}{4}
$$

This means that as long as $h\left(P_{j-1}\right) \geq \kappa^{\prime}+\kappa$ for a point P_{j}, the next point has a much smaller height. This condition can be satisfied for any point because any number multiplied by $\frac{3}{4}$ repeatedly will get close to zero.
It has been shown that every element $P \in \Gamma$ can be written as

$$
P=a_{1} Q_{1}+a_{2} Q_{2}+\cdots+a_{n} Q_{n}+2^{m} R
$$

for integers a_{1}, \ldots, a_{n} and R such that $h(R) \geq \kappa^{\prime}+\kappa$. Therefore,

$$
\left\{Q_{1}, Q_{2}, \ldots, Q_{n}\right\} \cup\left\{R \in \Gamma: h(R) \geq \kappa^{\prime}+\kappa\right\}
$$

generates Γ. By Lemma 1 and Lemma 4, this set if finite and thus finished the proof that Γ is finitely generated.

References

[1] Silverman, J. H.; Tate, J. T. Rational Points on Elliptic Curves. Undergraduate Texts in Mathematics 2015.

