
MORDELL’S THEOREM

SARAH MARSHALL

We will be roughly following the proof for Mordell’s Theorem given in [1]. In order to
properly understand and prove Mordell’s Theorem, the concept of height must be defined
and four lemmas must be stated and proven.

Definition: Let x be a rational number such that x = m
n is in lowest terms. The height of

x, H(x) is defined as

H(x) = H
(m
n

)
= max{|m|, |n|}

The height of rational number measures its complexity. The following property of height
makes it very useful for the proof of Mordell’s Theorem:

Property: (Finiteness Property of the Height) The set of all rational numbers whose height
is less than some fixed number is a finite set.

Proof. Suppose the height of a rational number x = m
n < M where M is some fixed number.

Then |m|, |n| < M and thus there is only a finite amount of choices for m and n.
�

When considering a ration point P = (x, y) on the elliptic curve C : y2 = x3 + ax2 + bx+ c,
with a, b, c ∈ Z, the height of the point P is the height of the x-coordinate. The height of the
point at infinity, O is defined to be 1.

Since the height does not behave additively with respect to the addition law for points on
the curve, it is more useful to use

h(P ) = logH(P ).

Lemma 1: For every real number M , the set {P ∈ C(Q) : h(P ) ≤M} is finite.

Proof. The finiteness property of height applies to the rational points on C with respect to
the height, h(P ), defined above. Suppose M is positive number. Since the height of a point
P is defined as the height of the x-coordinate of P and P is a rational point, there are finitely
many x-coordinates with height less than M . Each x-coordinate has only two choices for
a y-coordinate. Thus, there are finitely many rational points P on the curve C such that
h(P ) ≤M .

�

Now, using the height of a point, h(P ), Lemma 2, relates the height of P0 and P + P0.
1
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Lemma 2: Let P0 be a fixed rational point of C. There is a constant κ0 that depends on
P0 and on a, b, c such that

h(P + P0) ≤ 2h(P ) + κ0

Proof. If P0 = O, then the lemma is trivial. Thus, assume P0 6= O so P0 = (x0, y0). Take
P = (x, y). It suffices to prove the lemma for all P except P = P0,−P0, and O. This is good
because x 6= x0 so we don’t need to use the duplication formula. By excluding these points,
κ0 will depend on these points. This does not pose an issue since κ0 will already depend
P0, a, b, c and thus excluding these points will not effect the inequality.
Now suppose

P + P0 = (ζ, η)

Finding the height of P + P0 amounts to finding the height of ζ. Can write ζ in terms of
(x0, y0) and (x, y) as such

ζ + x+ x0 = λ2 − a with λ =
y − y0

x− x0

⇔ ζ =
( y − y0

x− x0

)2
− a− x− x0

=
(y − y0)2 − (a+ x+ x0)(x− x0)2

(x− x0)2

=
y2 − 2yy0 + y2

0 − (a+ x+ x0)(x2 − 2xx0 + x2
0)

x2 − 2xx0 + x2
0

=
y2 − 2yy0 + y2

0 − (ax2 + x3 − 2xx0a− x0x
2 − xx2

0 + ax2
0 + x3

0)

x2 − 2xx0 + x2
0

=
ax2 + bx+ c− 2yy0 + y2

0 − (ax2 − 2xx0a− x0x
2 − xx2

0 + ax2
0 + x3

0)

x2 − 2xx0 + x2
0

=
bx+ c− 2yy0 + y2

0 − (−2xx0a− x0x
2 − xx2

0 + ax2
0 + x3

0)

x2 − 2xx0 + x2
0

=
Ay +Bx2 + Cx+D

Ex2 + Fx+G
where A,B, . . . , G depend on a, b, c and x0, y0. Multiply by least common denominator so
that A,B, . . . , G are integers.
Since x = m

e2
and y = n

e3
with x and y in lowest terms and gcd(m, e) = gcd(n, e) = 1, can

rewrite ζ as

ζ =
A n

e3
+B

(
m
e2

)2
+ C m

e2
+D

E
(

m
e2

)2
+ F m

e2
+G

Clearing the denominators gives

ζ =
Ane+Bm+ Cme2 +De4

Em+ Fme2 +Ge4

Since it is not known if ζ is in lowest terms,

H(ζ) ≤ max{|Ane+Bm+ Cme2 +De4|, |Em+ Fme2 +Ge4|}
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Need to put bounds on m, e2, and n. When looking at the height of a point P =
(

m
e2
, n
e3

)
,

H(P ) = max{|m|, |e2|}. Thus, |m| ≤ H(P ) and |e2| ≤ H(P ).
Now put bound on n. By substituting in x = m

e2
and y = n

e3
to y2 = x3 + ax2 + bx + c and

clearing the denominator,
n2 = m3 + am2e2 + bme4 + ce2

Taking absolute values and using triangle inequality gives

|n2| ≤ |m3|+ |am2e2|+ |bme4|+ |ce2|
≤ H(P )3 + aH(P )3 + bH(P )3 + cH(P )3

Thus, |n| ≤ KH(P )3/2 for K =
√

1 + |a|+ |b|+ |c|.
Therefore,

|Ane+Bm+ Cme2 +De4| ≤ |Ane|+ |Bm|+ |Cme2|+ |De4|
≤ (|AK|+ |B|+ |C|+ |D|)H(P )2

and
|Em+ Fme2 +Ge4| ≤ |Em|+ |Fme2|+ |Ge4|

≤ (|E|+ |F |+ |G|)H(P )2

Hence,

H(P + P0) = H(ζ) ≤ max{|AK|+ |B|+ |C|+ |D|, |E|+ |F |+ |G|}H(P )2

Take logarithm
h(P + P0) ≤ 2h(P ) + κ0

where
κ0 = log max{|AK|+ |B|+ |C|+ |D|, |E|+ |F |+ |G|}

�

Lemma 3: For rational points P on the curve C : y2 = x3 + ax2 + bx, there is a constant κ
depending on a, b, c such that

h(2P ) ≥ 4h(P )− κ

Proof. As with Lemma 2, assume that the inequality holds for all P except for points in a
finite fixed set. In this, lemma, points P such that 2P = O will not be considered. As with
Lemma 2, excluding these points will cause κ to depend on them but since κ already depends
on a, b, c, exclusion of these points will not effect the inequality. Suppose P = (x, y) is a point
on C and 2P = (ζ, η). Then

ζ + 2x = λ2 − a with λ =
f ′(x)

2y

Since y2 = f(x) = x3 + ax2 + bx+ c, can write

ζ =
(f ′(x)

2y

)2
− a− 2x

ζ =
f ′(x)2 − (4a+ 8x)f(x)

4f(x)

ζ =
(3x2 + 2ax+ b)2 − 8x4 − 12ax3 − 4a2x2 − 8bx2 − 4abx− 8cx− 4ac

4x3 + 4ax2 + 4bx+ 4c
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ζ =
x4 − 2bx2 − 8cx+ b2 − 4ac

4x3 + 4ax2 + 4bx+ 4c

Since f(x) and f ′(x) have no common complex roots, due to the fact that f(x) is non-
singular from assumption, the polynomials with integer coefficients that divide to give ζ have
no common complex roots.
Since want to show h(2P ) ≥ 4h(P ) − κ and h(P ) = h(x), h(2P ) = h(ζ), it suffices to show
that h(ζ) ≥ 4h(x)− κ. Use the following Lemma to do this.

Lemma: Let φ(X) and ψ(X) be polynomials with integer coefficients and no common com-
plex roots. Let d be the maximum of the degrees of φ and ψ.
(a) There is an integer R ≥ 1, depending on φ and ψ, so that for all rational numbers m

n ,

gcd
(
ndφ

(m
n

)
, ndψ

(m
n

))
divides R.

(b) There are constants κ1 and κ2, depending on φ and ψ, so that for all rational numbers
m
n that are not roots of ψ,

d · h
(m
n

)
− κ1 ≤ h

(φ(m/n)

ψ(m/n)

)
≤ d · h

(m
n

)
+ κ2

Proof. (a) Since both φ and ψ have degree less than or equal to d, ndφ
(
m
n

)
and ndψ

(
m
n

)
are

integers which means that their gcd can be determined.
Without loss of generality, assume that φ has degree d and ψ has degree e ≤ d. So

ndφ
(m
n

)
= a0m

d + a1m
d−1n+ · · ·+ adn

d

and

ndψ
(m
n

)
= b0m

end−e + b1m
e−1nd−e+1 + · · ·+ ben

d

Having no common roots means that φ(X) and ψ(X) are relatively prime in Q[X] and
generate a unit ideal. So

F (X)φ(X) +G(X)ψ(X) = 1

where F (X) and G(X) are polynomials with coefficients in Q. Let the maximum degree of
these two polynomials be denoted by D. Multiply F (X) and G(X) by large A so that AF (X)
and AG(X) have integer coefficients. Substitute in X = m

n and multiply by AnD+d to get

nDAF
(m
n

)
· ndφ

(m
n

)
+ nDAG

(m
n

)
· ndψ

(m
n

)
= AnD+d

Suppose δ = gcd
(
ndφ

(
m
n

)
, ndψ

(
m
n

))
. Then since nDAF

(
m
n

)
and nDAG

(
m
n

)
are integers,

δ|AnD+d. The desired result is that δ|R where R doesn’t depend on m,n. Thus, look at

AnD+d−1ndφ
(m
n

)
= Aa0m

dnD+d−1 +Aa1m
d−1nD+d + · · ·+Aadn

D+2d−1

Since δ divides ndφ
(
m
n

)
and AnD+d, then δ divides Aa0m

dnD+d−1. So, δ divides
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gcd
(
AnD+d, Aa0m

dnD+d−1
)

. Since gcd(m,n) = 1, δ divides Aa0n
D+d−1. Iterate this argu-

ment with AnD+d−2ndφ
(
m
n

)
to find δ divides Aa2

0n
D+d−1. Continuing this argument results

in δ divides AaD+d
0 . Thus, set R = AaD+d

0 and therefore, gcd
(
ndφ

(
m
n

)
, ndψ

(
m
n

))
divides R.

(b) First prove the lower bound. Assume m
n is not a root of φ. Again, without loss of

generality, assume that φ has degree d and ψ has degree e ≤ d. Say

ζ =
φ(m/n)

ψ(m/n)
=
ndφ(m/n)

ndψ(m/n)

Then H(ζ) = max{|ndφ(m/n)|, |ndψ(m/n)|}. Since there may be common factors, use part
(a) to bound H(ζ) from below. Since max{a, b} ≥ 1

2(a+ b),

H(ζ) ≥ 1

R
max{|ndφ(m/n)|, |ndψ(m/n)|}

≥ 1

2R

(
|ndφ(m/n)|+ |ndψ(m/n)|

)
Consider

H
(m
n

)d
= max{|m|d, |n|d}

Now look at the quotient

H(ζ)

H
(
m
n

)d ≥ 1

2R

|ndφ(m/n)|+ |ndψ(m/n)|
max{|m|d, |n|d}

=
1

2R

|φ(m/n)|+ |ψ(m/n)|
max{|(m/n)|d, 1}

Define a function p(t) such that

p(t) =
|φ(t)|+ |ψ(t)|
max{|t|d, 1}

Since the φ(t) has degree d, the numerator will have a polynomial of degree equal to or
greater than the degree of the polynomial in the denominator. Thus, as |t| → ∞, p(t) will
be a non-zero number. Since p(t) is bounded below, there exists a constant C1 > 0 such that
p(t) ≥ C1 for all t.Thus,

H(ζ)

H
(
m
n

)d ≥ 1

2R
· p
(m
n

)

H(ζ) ≥ C1

2R
·H
(m
n

)d
Take logarithm to get

h(ζ) ≥ dh
(m
n

)
− κ1 with κ1 = log

2R

C1
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Now prove the upper bound. Want to show that

h
(φ(m/n)

ψ(m/n)

)
≤ d · h

(m
n

)
+ κ2

with κ2 depending on φ and ψ. Again, take

ζ =
φ(m/n)

ψ(m/n)
=
ndφ(m/n)

ndψ(m/n)

Since it is not known if this is in lowest terms, the height could be less than max{|ndφ(m/n)|, |ndψ(m/n)|}.
Thus,

H(ζ) ≤ max{|ndφ(m/n)|, |ndψ(m/n)|}
≤ max{|φ(m/n)|, |ψ(m/n)|}|nd|

Consider

H
(m
n

)d
= max{|m|d, |n|d}

Now look at the quotient

H(ζ)

H
(
m
n

)d ≤ max{|φ(m/n)|, |ψ(m/n)|}|nd|
max{|m|d, |n|d}

≤ max{|φ(m/n)|, |ψ(m/n)|}

This is true because if max{|m|d, |n|d} = |n|d, then |n|
d

|n|d = 1. If max{|m|d, |n|d} = |m|d, then

|n|d
|m|d ≤ 1. So,

H(ζ) ≤ H
(m
n

)d
·max{|φ(m/n)|, |ψ(m/n)|}

Take logarithm

h(ζ) ≤ dh
(m
n

)
+ κ2 with κ2 = log(max{|φ(m/n)|, |ψ(m/n)|})

�

To finish the proof for Lemma 3, see that from the previous Lemma, h(ζ) ≥ dh
(
m
n

)
−κ1 with

κ1 depending on φ and ψ. Since the maximum degree of the polynomials in the numerator
and denominator of ζ is 4, can substitute to get

h(ζ) ≥ 4h
(m
n

)
− κ1

Also use that h(P ) = h(x) = h(m/n), h(2P ) = h(ζ), and the fact that the polynomials in the
numerator and denominator of ζ depend on a, b, c to get h(P ) = h(x), h(2P ) = h(ζ) which
is the desired product.

�

Lemma 4: The index [C(Q) : 2C(Q)] is finite.

In order to fully prove Lemma 4, need to consider both the reducible and irreducible cases.
Only the proof of the reducible case will be given.
The Reducible Case:
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This case considers when C : y2 = f(x) is reducible, meaning f(x) has at least one rational
root or at least one rational point of order two. For simplicity, define Γ = C(Q). Suppose x0

is a rational root of f(x). Then, if f(x) is replaced with f(x − x0), then it can be assumed
that f(x) = x3 + ax2 + bx with integer coefficients. Since this change of coordinates takes
(x0, 0) to (0, 0) = T , then T is a rational point on C such that 2T = O.

Since the index [Γ : 2Γ], or equivalently the order of the group Γ/2Γ, is of interest, want to
look at a map from C → C such that P 7→ 2P where P is a rational point on C. Instead
of trying to determine one operation that gives this result, look at the composition of two
different operations, one from C → C̄ and the other from C̄ → C where C̄ is a curve defined
as

C̄ : y2 = x3 + āx2 + b̄x

with

ā = −2a and b̄ = a2 − 4b

Consider
¯̄C : y2 = x3 + ¯̄ax2 + ¯̄bx

with
¯̄a = −2ā = 4a and ¯̄b = ā2 − 4b̄ = 4a− 4(a2 − 4b) = 16b

So,
¯̄C : y2 = x3 + 4ax2 + 16bx

This means that ¯̄C is isomorphic to C with the map (x, y) 7→ (1
4x,

1
8y) and so Γ ∼= ¯̄Γ.

The following proposition will prove that specific maps from C → C̄ and C̄ → C are homo-
morphisms that will be useful in proving Lemma 4.
Proposition: Let C and C̄ be elliptic curves given by the equations

C : y2 = x3 + ax2 + bx and C̄ : y2 = x3 + āx2 + b̄x,

where

ā = −2a and b̄ = a2 − 4b.

Let T = (0, 0) ∈ C.
(a) There is a homomorphism φ : C → C̄ defined by:

φ(P ) =

{(
y2

x2 ,
y(x2−b)

x2

)
, if P = (x, y) 6= O, T,

Ō, if P = O or P = T.

The kernel of φ is {O, T}.
(b) There is a homomorphism ψ : C̄ → C defined by:

ψ(P̄ ) =

{(
ȳ2

x̄2 ,
ȳ(x̄2−b̄)

x̄2

)
, if P̄ = (x, y) 6= Ō, T̄ ,

O, if P̄ = Ō or P̄ = T̄ .

(c) Define h : ¯̄C → C with the map (x, y) 7→ (1
4x,

1
8y). Now say φ̄ = h ◦ ψ. The composition

ψ ◦ φ : C → C is the multiplication by two map,

φ̄ ◦ φ(P ) = 2P
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Proof. (a) First, need to check that this map is well defined. Thus, need to ensure that
P̄ = (x̄, ȳ) satisfies C̄.

x̄3 + āx̄2 + b̄x̄ = x̄(x̄2 − 2ax̄+ (a2 − 4b))

=
y2

x2

(y4

x4
− 2a

y2

x2
+ (a2 − 4b)

)
=
y2

x2

(y4 − 2ay2x2 + (a2 − 4b)(x4)

x4

)
=
y2

x2

((y2 − ax2)2 − 4bx4

x4

)
=
y2

x6

(
(x3 + bx)2 − 4bx4

)
=
(y(x2 − b)

x2

)2

= ȳ

Now, need to show that φ is a homomorphism which amounts to proving that

φ(P1 + P2) = φ(P1) + φ(P2) for all P1, P2onC

If P1 or P2 is O, then assuming P1 = O without loss of generality,

φ(P1 + P2) = φ(O + P2) = φ(P2) = Ō + φ(P2) = φ(O) + φ(P2)

If P1 or P2 is T , then assuming P1 = T without loss of generality, need to show that φ(T+P ) =
φ(P ). Since P is a point (x, y),

P + T = (x, y) + (0, 0) =
( b
x
,− by

x2

)
Now, write P + T as

P + T = (x(P + T ), y(P + T )) and φ(P + T ) = (x̄(P + T ), ȳ(P + T ))

Thus,

x̄(P + T ) =
(y(P + T )

x(P + T )

)2
=
(−by/x2

(b/x)

)2
=
y2

x2
= x̄(P )

ȳ(P + T ) =
(y(P + T )(x(P + T )2 − b)

(x(P + T ))2

)
=
((−by/x2)((b/x)2 − b)

(b/x)2

)
= ȳ(P )

Hence, by this argument, φ(T + P ) = φ(P ) unless P = T . Then,

φ(T + T ) = φ(O) = Ō = Ō + Ō = φ(T ) + φ(T )

Now need to show that φ takes negatives to negatives. Since −P = −(x, y) = (x,−y),

φ(−P ) = φ(x,−y) =
((−y

x

)2
,
−y(x2 − b)

x2

)
= −φ(x, y) = −φ(P )

Thus, all that is left to show is that P1 +P2 +P3 = O implies that φ(P1)+φ(P2)+φ(P3) = Ō
where P1, P2, P3 are not O or T . The equation P1 + P2 + P3 = O is equvalent to saying
that P1, P2, P3 lie on a line that intersects C. Suppose the equation for that line is given by
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y = λx+ ν. Want to show that there is line intersecting C̄ at the points φ(P1), φ(P2), φ(P3).
Suppose that a line that intersects C̄ is given by

y = λ̄x+ ν̄

where

λ̄ =
νλ− b
ν

and ν̄ =
ν2 − aνλ+ bλ2

ν
Thus, need to check that the points φ(P1), φ(P2), φ(P3) lie on this line.

First check that φ(P1) = φ(x1, y1) = (x̄1, ȳ1) is on the line.

λ̄x̄1 + ν̄ =
νλ− b
ν

(y2
1

x2
1

)
+
ν2 − aνλ+ bλ2

ν

=
y2

1(νλ− b) + x2
1(ν2 − aνλ+ bλ2)

νx2
1

=
(y2

1 − x2
1a)νλ+ (x2

1λ
2 − y2

1)b+ x2
1ν

2

νx2
1

=
(x3

1 + bx1)νλ+ (x1λ− y1)(x1λ+ y1)b+ x2
1ν

2

νx2
1

=
(x3

1 + bx1)νλ+ (−ν)(x1λ+ y1)b+ x2
1ν

2

νx2
1

=
(x3

1 + bx1)λ− (x1λ+ y1)b+ x2
1ν

x2
1

=
x2

1(x1λ+ ν)− y1b

x2
1

=
y1(x2

1 − b)
x2

1

= ȳ1

The same is true for φ(P2) and φ(P3).

To give the complete proof that this is a homomorphism, would need to show that x̄(P1), x̄(P2), x̄(P3)
are the roots of the equation (λ̄x+ ν̄)2 − f̄(x) = 0.

The kernel of φ is very clearly {O, T} since these are the only two elements that map to Ō.

(b) Using part (a), a homomorphism φ̄ : C̄ → ¯̄C can be defined by the same equations for φ,

just adding bars over a and b. Since ¯̄C → C is an isomorphism, ψ : C̄ → C can be written
as composition of φ̄ with this isomorphism to give a well defined homomorphism.

(c) Need to show that the composition map φ̄ ◦ φ gives a multiplication by two map. The
duplication formula for a point P is given by

2P = 2(x, y) =
((x2 − b)2

4y2
,
(x2 − b)(x4 + 2ax3 + 6bx2 + 2abx+ b2)

8y3

)
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So,

φ̄ ◦ φ(P ) = φ̄ ◦ φ(x, y) = φ̄
(y2

x2
,
y(x2 − b)

x2

)

=

((y(x2−b)
x2

)2

(
y2

x2

)2 ,

y(x2−b)
x2

((
y2

x2

)2
− (a2 − 4b)

)
(
y2

x2

)2

)

=

(
(x2 − b)2

y2
,
(x2 − b)(y4 − (a2 − 4b)x4)

y3x2

)
Since y2 = x3 + ax2 + bx = x(x2 + ax+ b), y4 = x2(x2 + ax+ b)2 and so

=

(
(x2 − b)2

y2
,
(x2 − b)(x2(x2 + ax+ b)2 − (a2 − 4b)x4)

y3x2

)

=

(
(x2 − b)2

y2
,
(x2 − b)((x2 + ax+ b)2 − (a2 − 4b)x2)

y3

)

=

(
(x2 − b)2

y2
,
(x2 − b)(x4 + 2ax3 + 6bx2 + 2abx+ b2)

y3

)
= 2(

x

4
,
y

8
) = 2P

To show that φ ◦ φ̄(P̄ ) = 2(P̄ ), use that since φ is a homomorphism,

φ(2P ) = φ(P + P ) = φ(P ) + φ(P ) = 2φ(P )

Thus,

φ ◦ φ̄(P̄ ) = φ ◦ φ̄(φ(P )) = φ(2P ) = 2φ(P )

The above argument only works when x and y are not zero. Thus, need to check points of
order 2.

φ̄ ◦ φ(T ) = φ̄(Ō) = O
φ̄ ◦ φ(O) = φ̄(Ō) = O

Therefore, φ̄ ◦ φ is a multiplication by two map.
�

The description of the homomorphism φ shows that φ maps Γ→ Γ̄. It is not obvious that
a given rational point in Γ̄ comes from a rational point in Γ. Thus, need to look at the image
of φ. Denote the subgroup of rational points in Γ̄ obatined by applying φ to Γ as φ(Γ).

Claim:
(i) Ō ∈ φ(Γ)
(ii) T̄ = (0, 0) ∈ φ(Γ) if and only if b̄ = a2 − 4b is a perfect square.
(iii) Let P̄ = (x̄, ȳ) ∈ Γ̄ with x̄ 6= 0. Then P̄ ∈ φ(Γ) if and only if x̄ is the square of a rational
number.
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Proof. (i) Since φ(O) = Ō and O ∈ Γ, Ō ∈ φ(Γ).

(ii) In order for T̄ = (0, 0) ∈ φ(Γ), need to find a point P in Γ such that x̄(P ) = y2

x2 = 0. If

x = 0, then P = T = (0, 0). This can not be the case because φ(T ) = Ō and not T̄ . Thus,
need to find a point in Γ such that y = 0

0 = x3 + ax2 + bx = x(x2 + ax+ b)

The case where x = 0 has already been ruled out. Thus, look at the case where 0 = x2+ax+b.
By the quadratic formula, this equation has a non-zero rational root if and only if a2 − 4b is
a perfect square.

(iii) Suppose P̄ = (x̄, ȳ) ∈ Γ̄ with x̄ 6= 0 and P̄ ∈ φ(Γ). Then x̄ = y2

x2 so x̄ is the square of a
rational number.
Now suppose P̄ = (x̄, ȳ) ∈ Γ̄ with x̄ 6= 0 and x̄ = w2 where w is a rational number. Need to
find a point in Γ that is mapped to P̄ = (x̄, ȳ). Since O and T are in the kernel of φ, if (x̄, ȳ)
is in φ(Γ) then the points P1 = (x1, y1) and P2 = (x2, y2) map to (x̄, ȳ) where

x1 =
1

2

(
w2 − a+

ȳ

w

)
, y1 = x1w

x2 =
1

2

(
w2 − a− ȳ

w

)
, y2 = −x2w

Since P1 = (x1, y1) and P2 = (x2, y2) are rational points, just need to show that Pi = (xi, yi) ∈
C for i = 1, 2 and φ(Pi) = (x̄, ȳ). To show that Pi is on C, need to show that

x̄i = xi + a+
b

xi
=
y2
i

x2
i

Want to get b in terms of xi. It turns out that

x1x2 =
1

4

(
(w2 − a)− ȳ2

w2

)
=

1

4

(
(x̄− a)− ȳ2

x̄

)
=

1

4

( x̄3 − 2ax̄2 + a2 − ȳ2

x̄

)
=

1

4

( ȳ2 + 4bx̄− ȳ2

x̄

)
= b

This combined with the fact that yi
xi

= ±w from the definitions of y1 and y2 gives

y2
i

x2
i

= xi + a+
b

xi
⇔ w2 = x1 + a+ x2

Thus, it suffices to show that w2 = x1 + a+ x2 is true. Using the definitions of x1 and x2,

x1 + a+ x2 =
1

2

(
w2 − a+

ȳ

w

)
+ a+

1

2

(
w2 − a− ȳ

w

)
=

1

2

(
w2 − a+

ȳ

w
+ w2 − a− ȳ

w

)
+ a
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= w2

Now all that is left to show is for i = 1, 2 and φ(Pi) = (x̄, ȳ). Thus, need to show

y2
i

x2
i

= x̄ and
yi(x

2
i − b)
x2
i

= ȳ

Since yi
xi

= ±w and x̄ = w2,

y2
i

x2
i

= w2 = x̄

Now, use b = x1x2 and definitions of y1, x1, y2, and x2 to show
yi(x

2
i−b)
x2
i

= ȳ.

y1(x2
1 − b)
x2

1

=
x1w(x2

1 − x1x2)

x2
1

= w(x1 − x2) = w
(1

2

(
w2 − a+

ȳ

w

)
− 1

2

(
w2 − a− ȳ

w

))
= ȳ

y2(x2
2 − b)
x2

2

=
−x2w(x2

2 − x1x2)

x2
2

= w(x1 − x2) = w
(1

2

(
w2 − a+

ȳ

w

)
− 1

2

(
w2 − a− ȳ

w

))
= ȳ

�

If it can be shown that the indices (Γ̄ : φ(Γ)) and (Γ : ψ(Γ̄)) are finite, the fact that (Γ : 2Γ)
is finite will follow. It will be enough to prove that one of these indicies is finite.

Proposition: Let Q∗ be the multiplicative group of non-zero rational numbers and let Q∗2
denote the group of squares of elements of Q∗ such that

Q∗2 = {u2 : u ∈ Q∗}
Define a map α : Γ→ Q∗/Q∗2 as follows:

α(P ) =


1 mod Q∗2 if P = O
b mod Q∗2 if P = T

x mod Q∗2 if P = (x, y), x 6= 0

(a) The map α : Γ→ Q∗/Q∗2 described above is a homomorphism.
(b) The kernel of α is the image ψ(Γ̄). Hence α induces a one-to-one homomorphism

Γ/ψ(Γ̄) ↪−→ Q∗/Q∗2

(c) Let p1, p2, . . . , pt be the distinct primes dividing b. Then the image of α is contained in
the subgroup of Q∗/Q∗2 consisting of the elements

{±pe11 p
e2
2 · · · p

et
t : each ei equals 0 or 1}

(d) The index (Γ : ψ(Γ̄)) is at most 2t+1.

Proof. (a) Need to show that α is a homomorphism which amounts to proving that

α(P1 + P2) = α(P1)α(P2) for all P1, P2 ∈ Γ

If P1 or P2 is O, then assuming P1 = O without loss of generality,

α(P1 + P2) = α(O + P2) = α(P2) = 1 · α(P2) = α(O)α(P2)
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If P1 or P2 is T , then assuming P1 = T without loss of generality, need to show that α(T+P ) =
b · α(P ) = b · x. Since P is a point (x, y),

P + T = (x, y) + (0, 0) =
( b
x
,− by

x2

)
Then,

α(P + T ) =
b

x
Since α(P ) = x = 1

x · x
2 ≡ 1

x mod Q∗2,

α(P + T ) =
b

x
= b · 1

x
= α(T ) · α(P )

Hence, by this argument, α(T +P ) = α(T ) ·α(P ) unless P = T . Since α(T ) = b = 1
b · b

2 ≡ 1
b

mod Q∗2, then

α(T + T ) = α(O) = 1 =
b

b
= b · 1

b
= α(T ) · α(T )

Now need to show that α takes negatives to negatives. Since −P = −(x, y) = (x,−y),

α(−P ) = α(x,−y) = x = x2 · 1

x
≡ 1

x
mod Q∗2 =

1

α(x, y)
= α(P )−1 mod Q∗2

Thus, all that is left to show is that P1 + P2 + P3 = O implies that α(P1)α(P2)α(P3) ≡ 1
mod Q∗2 where P1, P2, P3 are not O or T . The equation P1 + P2 + P3 = O is equvalent
to saying that P1, P2, P3 lie on a line that intersects C. Suppose the equation for that line
is given by y = λx + ν, and the intersection points have x-coordinates x1, x2, x3. These
x-coordinates are roots of the equation

x3 + (a− λ2)x2 + (b− 2λν)x+ (c− ν2) = 0

Therefore,
x1 + x2 + x3 = λ2 − a

x1x2 + x2x3 + x2x3 = b− 2λν

x1x2x3 = ν2 − c
Since c = 0, x1x2x3 = ν2 ≡ 1 mod Q∗2. Hence α(P1)α(P2)α(P3)x1x2x3 = ν2 ≡ 1 mod Q∗2.

(b) From the Claim, ψ(Γ̄) = {(x, y) ∈ Γ : x ∈ Q2∗} ∪ {O} ∪ {T} (if b is a square). Thus, for
every point P in {(x, y) ∈ Γ : x ∈ Q2∗}, α(P ) = 1 mod Q∗2 since x is a square. By definition,
α(O) = 1 mod Q∗2. Since α(T ) = b mod Q∗2, if b is a square, α(T ) = 1 mod Q∗2. Thus,
the kernel of α is ψ(Γ̄).

(c) Need to determine what rational numbers can be the x-coordinate of a point in Γ. It is
known that x = m

e2
and y = n

e3
. Then,

y2 = x3+ax2+bx⇔ n

e3

2
=
m

e2

3
+a

m

e2

2
+b

m

e2
⇔ n2 = m3+am2e2+bme4 = m(m2+ame2+be4)

This equation expresses a square as the product of two integers. Let d = gcd(m,m2 +ame2 +
be4). Since d divides m and m2 + ame2 + be4, d must divide be4. Since the assumption is
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that m and e are relatively prime, then d divides b. Thus, every prime that divides m is of
even power except for perhaps primes that divide b. Thus, α(P ) = x = m

e2
≡ ±pe11 p

e2
2 · · · p

et
t

mod Q∗2 where each ei equals 0 or 1.

(d) The subgroup {±pe11 p
e2
2 ···p

et
t : each ei equals 0 or 1} has exactly 2t+1 elements where t is

the number of distinct primes dividing b. Since Γ/ψ(Γ̄) maps one-to-one with the subgroup,
the index (Γ : ψ(Γ̄)) is at most 2t+1.
The proof for the finiteness of the index (Γ : ψ(Γ̄)) is the same except putting bars on
everything.

�

Lemma: Let A and B be abelian groups, and supppose that φ : A→ B and ψ : B → A are
homomorphisms satisfying

ψ ◦ φ(a) = 2a for all a ∈ A and φ ◦ ψ(b) = 2b for all b ∈ B
Suppose further that φ(A) has finite index in B and ψ(B) has finite index in A. Then 2A
has finite index in A. More precisesly, the indicies satisfy

(A : 2A) ≤ (A : ψ(B))(B : φ(A))

Proof. Since φ(A) has finite index in B and ψ(B) has finite index in A, there are elements
b1, . . . , bn ∈ B that represent the cosets φ(A) in B and elements a1, . . . , an ∈ A that represent
the cosets ψ(B) in A. Thus, can find b ∈ bi + φ(A) for some 1 ≤ i ≤ n and a ∈ aj +ψ(B) for
some 1 ≤ j ≤ m. Suppose b = bi + φ(a′) for some 1 ≤ i ≤ n and a′ ∈ A and a = aj + ψ(b)
for some 1 ≤ j ≤ m and b ∈ B. Then,

a = aj + ψ(b)

= aj + ψ(bi + φ(a′))

= aj + ψ(bi) + ψ(φ(a′))

= aj + ψ(bi) + 2a′

Therefore, a can be written as the sum of an element in the set {aj + ψ(bi)|1 ≤ j ≤ m, 1 ≤
i ≤ n} and an element in 2A which implies that the set {aj + ψ(bi)|1 ≤ j ≤ m, 1 ≤ i ≤ n}
contains all of the representatives of cosets of 2A in A. Thus, 2A has a finite index in A.

�

Notice that if A = Γ and B = Γ̄, the index [Γ : 2Γ] is finite. Thus, [C(Q) : 2C(Q)] is finite.
Mordell’s Theorem: Let C be a non-singular cubic curve given by an equation

C : y2 = x3 + ax2 + bx

where a and b are integers. Then the group of rational points C(Q) is a finitely generated
abelian group.

Proof. Let Q1, Q2, . . . , Qn be representatives for the cosets in Γ/2Γ. For all points P in
Γ, there exsists i1 depending on P such that P − Qi1 ∈ 2Γ. Since P is in one of the
cosets, say P − Qi1 = 2P1 for P1 ∈ Γ. Iterating this process shows that for Qi1 , . . . , Qim ∈
{Q1, Q2, . . . , Qn} and P1, . . . , Pm ∈ Γ,

P1 −Qi2 = 2P2
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P2 −Qi3 = 2P3

. . .

Pm−1 −Qim = 2Pm

Now, rearranging and substituting the equations gives

P = Qi1 + 2P1 = Qi1 + 2Qi2 + 4P2 = . . . Qi1 + 2Qi2 + 4Qi3 + · · ·+ 2m−1Qim + 2mPm

Applying Lemma 2 and replacing P0 with −Qi gives

h(P −Qi) ≤ 2h(P ) + κi

for all P ∈ Γ. Do this for each Q1, Q2, . . . , Qn. Take κ′ := max{κ1, . . . , κn}. This can be
done due to Lemma 4 which says that there are finitely many Q′is. Then,

h(P −Qi) ≤ 2h(P ) + κ′

for all P ∈ Γ with 1 ≤ i ≤ n. Now use Lemma 3.

h(2Pj) ≥ 4h(Pj)− κ
⇔ 4h(Pj) ≤ h(2Pj) + κ

= h(Pj−1 −Qij ) + κ

≤ 2h(Pj−1) + κ′ + κ

⇔ h(Pj) ≤
h(Pj−1)

2
+
κ′ + κ

4

=
3h(Pj−1)

4
− h(Pj−1)− (κ′ + κ)

4
If h(Pj−1) ≥ κ′ + κ,

h(Pj) ≤
3h(Pj−1)

4
This means that as long as h(Pj−1) ≥ κ′+κ for a point Pj , the next point has a much smaller
height. This condition can be satisfied for any point because any number multiplied by 3

4
repeatedly will get close to zero.
It has been shown that every element P ∈ Γ can be written as

P = a1Q1 + a2Q2 + · · ·+ anQn + 2mR

for integers a1, . . . , an and R such that h(R) ≥ κ′ + κ. Therefore,

{Q1, Q2, . . . , Qn} ∪ {R ∈ Γ : h(R) ≥ κ′ + κ}
generates Γ. By Lemma 1 and Lemma 4, this set if finite and thus finished the proof that Γ
is finitely generated.

�
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