MORDELL’S THEOREM

SARAH MARSHALL

We will be roughly following the proof for Mordell’s Theorem given in [1]. In order to
properly understand and prove Mordell’s Theorem, the concept of height must be defined
and four lemmas must be stated and proven.

Definition: Let z be a rational number such that z = %

x, H(x) is defined as

is in lowest terms. The height of

H(x) = H(Z") = max{|m|, |n|}

The height of rational number measures its complexity. The following property of height
makes it very useful for the proof of Mordell’s Theorem:

Property: (Finiteness Property of the Height) The set of all rational numbers whose height
is less than some fixed number is a finite set.

Proof. Suppose the height of a rational number x = 7 < M where M is some fixed number.

Then |m/|, |n| < M and thus there is only a finite amount of choices for m and n.
t

When considering a ration point P = (z,y) on the elliptic curve C : y? = 23 4 ax? + bz + ¢,
with a, b, ¢ € Z, the height of the point P is the height of the x-coordinate. The height of the
point at infinity, O is defined to be 1.

Since the height does not behave additively with respect to the addition law for points on
the curve, it is more useful to use

h(P) = log H(P).
Lemma 1: For every real number M, the set {P € C(Q) : h(P) < M} is finite.

Proof. The finiteness property of height applies to the rational points on C' with respect to
the height, h(P), defined above. Suppose M is positive number. Since the height of a point
P is defined as the height of the x-coordinate of P and P is a rational point, there are finitely
many x-coordinates with height less than M. Each x-coordinate has only two choices for
a y-coordinate. Thus, there are finitely many rational points P on the curve C such that
h(P) < M.

O

Now, using the height of a point, h(P), Lemma 2, relates the height of Py and P + F.
1
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Lemma 2: Let Py be a fixed rational point of C. There is a constant k¢ that depends on
Py and on a, b, ¢ such that
h(P + Py) < 2h(P) + ko

Proof. If Py = O, then the lemma is trivial. Thus, assume Py # O so Py = (xg,yo). Take
P = (z,y). It suffices to prove the lemma for all P except P = Py, —FPp, and O. This is good
because x # xg so we don’t need to use the duplication formula. By excluding these points,
ko will depend on these points. This does not pose an issue since kg will already depend
Py, a,b,c and thus excluding these points will not effect the inequality.
Now suppose
P + PO = (Cv 7))
Finding the height of P + Py amounts to finding the height of (. Can write ( in terms of
(z0,y0) and (x,y) as such
Y—1Y
T — X0
_ 2
& (= (u) —a—z— 1T
T — X0
(y —y0)? — (a+ & + x0)(x — 20)*
(x — x0)?
Y2 = 2yyo + 3 — (a+ x + 30)(2? — 2zw0 + xF)
22 — 2xxo + 13

CH+z+x9=A —awith A\ =

oy —2yyo + 3 — (ax? + 2 — 2zx0a — woa? — xaf + axf + x])

2?2 — 2z + 23

az? 4+ bx + ¢ — 2yyo + Y3 — (ax? — 2zz00 — 202? — 2T + axd + 23)

22 — 2z + 23

2 — xad + axd + x})

_br+c—2yyo + y(Q] — (—2zx0a — xox
N x? — 2xx0 + T3
_Ay+Ba?+Cx+D
 Ex2+Fz+G
where A, B,...,G depend on a,b,c and xg,yo. Multiply by least common denominator so
that A, B,...,G are integers.
Since z = % and y = 23 with x and y in lowest terms and ged(m, e) = ged(n,e) = 1, can
rewrite ¢ as

2
A%+ B(%) +C%+D

¢= 2
B(%) +F3+G
Clearing the denominators gives

Ane + Bm + Cme? + De?

¢= Em + Fme? + Get
Since it is not known if { is in lowest terms,

H(¢) < max{|Ane + Bm + Cme? + De?|,|Em + Fme® + Ge|}
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Need to put bounds on m, €2, and n. When looking at the height of a point P = (6%, e%),
H(P) = max{|ml|, |€?|}. Thus, |m| < H(P) and |e?| < H(P).

Now put bound on n. By substituting in z = 73 and y = 75 to y? = 2% + ax® + bx + ¢ and
clearing the denominator, ,
n? = m3 + am?e? + bme* + ce?
Taking absolute values and using triangle inequality gives
1) < |+ am®e?) + [bme | + e
< H(P)* + aH(P)® + bH(P)? + cH(P)?

Thus, |n] < KH(P)/? for K = /T Jal + 0] +]cl.

Therefore,
|Ane + Bm + Cme?* 4+ De'| < |Ane| + |Bm| + |Cme?| + | De’|
< (|AK| +|B| + |C| + |D)H(P)?
and
|Em 4 Fme? + Get| < |Em| + |Fme?| + |Ge|
< (|B]+|F| +|G)H(P)?
Hence,

H(P + PRy) = H(¢) < max{|AK| + |B| +|C| + |D|,|E| + |F| + |G|} H(P)?
Take logarithm
h(P + Fy) < 2h(P) + ko
where
ko = logmax{|AK| + |B| + |C| + |D|,|E| + |F| + |G|}
O

Lemma 3: For rational points P on the curve C : y? = 23 4 ax? + bz, there is a constant ~
depending on a, b, ¢ such that
h(2P) > 4h(P) — k

Proof. As with Lemma 2, assume that the inequality holds for all P except for points in a
finite fixed set. In this, lemma, points P such that 2P = O will not be considered. As with
Lemma 2, excluding these points will cause x to depend on them but since x already depends
on a, b, ¢, exclusion of these points will not effect the inequality. Suppose P = (z,y) is a point
on C and 2P = ((,n). Then

f'(z)

(422 =X\ —q with A =
2y

Since y? = f(x) = 23 + ax? + bz + ¢, can write
/ 2
= (@) a9
2y
¢ = f'(2)? — (4a + 82) f(2)
Af(x)

(32% + 2az + b)? — 8z — 12az® — 4a?z? — 8bx? — dabr — 8cx — 4ac

423 + dax? + 4bx + 4c

(=
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¢ = x* — 2bx? — 8cx + b2 — 4ac
423 + dax? + 4bx + 4c

Since f(z) and f’(x) have no common complex roots, due to the fact that f(z) is non-
singular from assumption, the polynomials with integer coefficients that divide to give ¢ have
no common complex roots.

Since want to show h(2P) > 4h(P) — k and h(P) = h(z), h(2P) = h((), it suffices to show
that h(¢) > 4h(x) — k. Use the following Lemma to do this.

Lemma: Let ¢(X) and ¢(X) be polynomials with integer coefficients and no common com-
plex roots. Let d be the maximum of the degrees of ¢ and .
(a) There is an integer R > 1, depending on ¢ and v, so that for all rational numbers “*,

ged (ndqﬁ (%) , ndz/z (%) ) divides R.

(b) There are constants 1 and k2, depending on ¢ and v, so that for all rational numbers
~ that are not roots of v,

d- h(%) — K1 < h(z(&zg;) < d'h(%) + Ko

Proof. (a) Since both ¢ and v have degree less than or equal to d, ndqb(%) and ny (%) are

integers which means that their ged can be determined.
Without loss of generality, assume that ¢ has degree d and ) has degree e < d. So

ndqb(@) = aom® + aym@n + - + agn?
n
and
ndw(@) = bom®n?=¢ + bym* tndt ... 4 pond
n

Having no common roots means that ¢(X) and ¢(X) are relatively prime in Q[X] and
generate a unit ideal. So

F(X)o(X) + G(X)9(X) =1

where F'(X) and G(X) are polynomials with coefficients in Q. Let the maximum degree of
these two polynomials be denoted by D. Multiply F(X) and G(X) by large A so that AF(X)

and AG(X) have integer coefficients. Substitute in X = ' and multiply by AnP*d to get
D Y pda (™ D MY dy (VY 4, D
nPAF () nt9(50) +nPAG(T) () = An

Suppose § = ged (n%(%) , n%ﬁ(%)) Then since nDAF<%) and nDAG(%) are integers,
§|AnP*?. The desired result is that 6| R where R doesn’t depend on m,n. Thus, look at

_ m _ _ _
AnD+d 1nd¢(7> = AagmnPT1 4 Agym@nPHe 4. 4 AgunDPt2A1
n

Since ¢ divides ndgb(%) and AnP*¢ then § divides Aagm®nP+4=1. So, § divides
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ged (AnD+d, Aagman+d_1). Since ged(m,n) = 1, § divides Aagn?T4=1. Iterate this argu-
ment with An” +d_2nd¢(%) to find ¢ divides AaZnP+4=1. Continuing this argument results

in § divides Aaéj +4_ Thus, set R = Aaéj +4 and therefore, ged (ndqﬁ(%) ,ny (%)) divides R.

(b) First prove the lower bound. Assume 7' is not a root of ¢. Again, without loss of

generality, assume that ¢ has degree d and i has degree e < d. Say
p(m/n) _ nlg(m/n)
v(m/n)  nhp(m/n)

Then H(¢) = max{|n¢(m/n)|,|n%p(m/n)|}. Since there may be common factors, use part
(a) to bound H(¢) from below. Since max{a,b} > 3(a +1b),

(=

H(Q) 2 5 max{|no(m/m)], I (m /)]

> o (I (m/n)| + t(m/m) )

Consider
d
H(™)" = max{|m|?, [n|'}
n

Now look at the quotient

=
~

) oL [né(m/n)| + [n“y(m/n)]
H(m)d ~ 2R max{|m|%, |n|?}

_ 1 |g(m/n)| +[¢(m/n)|
2R max{|(m/n)¢, 1}

Define a function p(t) such that

@)+ [v(t)]
PO = ax{[7. 1

Since the ¢(t) has degree d, the numerator will have a polynomial of degree equal to or
greater than the degree of the polynomial in the denominator. Thus, as [t| — oo, p(t) will
be a non-zero number. Since p(¢) is bounded below, there exists a constant C; > 0 such that

p(t) > C for all t.Thus,
HQ 1 m
> p( =
~ 2R o(5)

()’ "

H(C)z%-H(f)d

313

Take logarithm to get

2
h(¢) > dh(%) — k1 with 51 = log c{f
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Now prove the upper bound. Want to show that

¢(m/n) m

n( )<d-n(Z) +r

P(m/n) n
with ko depending on ¢ and . Again, take
o(m/n) _ n'¢(m/n)
w(m/n)  np(m/n)
Since it is not known if this is in lowest terms, the height could be less than max{|n?¢(m/n)|, [n%p(m/n)|}.
Thus,

(=

H(¢) < max{[n¢(m/n)|, |n(m/n)[}
< max{|g(m/n)], [ (m/n)|}n]

Consider .
H(™)" = max{|m|?, [n|}
n
Now look at the quotient

H(C) _ max{|g(m/n)], [o(m/n)]}|n]
(z) max{[m]?, [n]7}

< max{|¢(m/n)], | (m/n)]}
n|®

This is true because if max{|m|?, |n|?} = |n|?, then \Zﬁ = 1. If max{|m|?, |n|?} = |m|?, then
Inl® < 1. So,

m|?

1) < H(™)" max{lo(m/m)], hi(m/m)]}
Take logarithm
h(Q) < dh () + o with Kz = log(max{|é(m /n)], [v(m/n)[})
]

To finish the proof for Lemma 3, see that from the previous Lemma, h({) > dh (%) — k1 with

k1 depending on ¢ and . Since the maximum degree of the polynomials in the numerator
and denominator of ( is 4, can substitute to get

h(¢) = 4h(%) — K1

Also use that h(P) = h(x) = h(m/n), h(2P) = h(¢), and the fact that the polynomials in the
numerator and denominator of ¢ depend on a, b, c to get h(P) = h(x), h(2P) = h({) which
is the desired product.

([l

Lemma 4: The index [C(Q) : 2C(Q)] is finite.

In order to fully prove Lemma 4, need to consider both the reducible and irreducible cases.
Only the proof of the reducible case will be given.
The Reducible Case:
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This case considers when C : y? = f(z) is reducible, meaning f(x) has at least one rational
root or at least one rational point of order two. For simplicity, define I' = C'(Q). Suppose xg
is a rational root of f(z). Then, if f(x) is replaced with f(x — ), then it can be assumed
that f(x) = 2% + ax? + bz with integer coefficients. Since this change of coordinates takes
(z0,0) to (0,0) =T, then T is a rational point on C such that 27" = O.

Since the index [I" : 2I'], or equivalently the order of the group I'/2T, is of interest, want to
look at a map from C' — C such that P — 2P where P is a rational point on C. Instead
of trying to determine one operation that gives this result, look at the composition of two
different operations, one from C' — C and the other from C' — C where C is a curve defined
as

C’:y2 =2 + az? + ba

with
a=—2aand b=a®—4b
Consider - ~
C:y?* =2+ a2’ + bx
with ~
a=—2a=4a and b = a* — 4b = 4a — 4(a® — 4b) = 16b
So,

C :y? =23 + 4a2® + 16bz
This means that C is isomorphic to C' with the map (z,y) — (%l‘, %y) and so I > T.
The following proposition will prove that specific maps from C — C and C — C are homo-

morphisms that will be useful in proving Lemma 4.
Proposition: Let C' and C be elliptic curves given by the equations

C:y? =23+ az? + bz and C : y? = 23 + az® + bz,
where
a=—2a and b= a® — 4b.
Let T = (0,0) € C. B
(a) There is a homomorphism ¢ : C' — C defined by:
y> y(z?-b) D
QZ)(P) — <_$27 x2 )7 lfP (.’L’,y) 7507T7
O, ifP=Qor P="T.
The kernel of ¢ is {O,T'}. -
(b) There is a homomorphism v : C' — C' defined by:
72 y(@*-b) P A
¢(P): (3—;27 T )7 1f€ (T?ZU)?EOLT‘?
O, ifP=QorP="T.

(c) Define h : C' — C with the map (x,y) — (%x, %y) Now say ¢ = h o . The composition
Po@:C — Cis the multiplication by two map,

q§o¢(P) =2P
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Proof. (a) First, need to check that this map is well defined. Thus, need to ensure that
P = (z,y) satisfies C'.
7% 4 az? + bz = 7(Z* — 20T + (a® — 4b))

2,4 2
yry )
T 22 ( 2a:c2 +(a* - 4b)>

_y (?/4 f42@2/2$2 + (a® - 45)(934))
a2 x4
_ iZ((yZ — aa;;f — 4bx4)
- 12(( 3 4 ba)? — 4bx4)
2 _
- (y(xxg b))2
=7

Now, need to show that ¢ is a homomorphism which amounts to proving that
O(Py + Py) = ¢(P1) + ¢(Ps) for all Py, PonC

If P, or P is O, then assuming P; = O without loss of generality,

(P + Py) = (O + Po) = ¢(Py) = O + ¢(P2) = ¢(O) + ¢(Py)
If P or P»is T, then assuming P; = T without loss of generality, need to show that ¢(T+P) =
¢(P). Since P is a point (z,y),

P+T=(z,y)+(0,0) = <é,—b—y>
Now, write P+ T as
P+T=(xP+T),yP+T)) and p(P+T)=(x(P+T),y(P+1T))

Thus,
_ y(P+T)\2  =by/z*\2 4>
WP+ = (Gpyry) = (o) =2 =2
_ y(P+T)(z(P+T)*>—b) (=by/2*)((b/x)* =b)\ _
g(P+T) = BT )= ( oy ) =u(P)

Hence, by this argument, ¢(T' 4+ P) = ¢(P) unless P = T'. Then,
ST +T)=¢(0) =0 =0+0=¢(T) +(T)

Now need to show that ¢ takes negatives to negatives. Since —P = —(z,y) = (z, —y),

o) = oo =) = ()" 25=D) = —sw.9) = ()

x T

Thus, all that is left to show is that P, + P>+ P3 = O implies that ¢(P) +¢(P) +¢(Ps) = O
where Py, P», P3 are not O or T. The equation P; + P» + P3 = O is equvalent to saying
that P;, P», P53 lie on a line that intersects C'. Suppose the equation for that line is given by
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y = Az 4 v. Want to show that there is line intersecting C' at the points ¢(Py), p(P2), d(Ps).
Suppose that a line that intersects C' is given by
Yy = x4 U
where
- vA—b and 7 — v? —av) + bA\?
v

v
Thus, need to check that the points ¢(Py), ¢(Ps), ¢(Ps) lie on this line.

First check that ¢(P1) = ¢(x1,y1) = (£1, 1) is on the line.

_ 2 2 _ 2
e O
1
B wA = b) + 23 (V2 — avh + bA?)

N I/CL‘%
_ (W —afa)vd + (23N — y7)b + 2fr?
I/ﬂ?%
_ (@ + br)vA + (@ — y) (@A + y)b + 2

V2

_ @+ br)vd + (—v) (@A + y1)b + 2t
B vl

_ (@ 4 be)A = (@A +y)b + 2ty
_ -
1
2} (x1A +v) — yib
i
_n@i—b)

i
=1

The same is true for ¢(P,) and ¢(Ps).

To give the complete proof that this is a homomorphism, would need to show that z(Py), (%), 7(Ps)
are the roots of the equation (\z + 7)? — f(z) = 0.

The kernel of ¢ is very clearly {O, T} since these are the only two elements that map to O.

(b) Using part (a), a homomorphism ¢ : C' — C can be defined by the same equations for ¢,
just adding bars over a and b. Since C — C is an isomorphism, 7 : C — C can be written
as composition of ¢ with this isomorphism to give a well defined homomorphism.

(c) Need to show that the composition map ¢ o ¢ gives a multiplication by two map. The
duplication formula for a point P is given by
2-0)2 (2% - b)(2* + 2a2® + 6bx? + 2abz + b2))

(x
2P =2 =
(z,y) ( R &
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So,

v
Since y? = 23 + az? + br = z(2% + ax + b), y* = 2?(2? + az + b)? and so
B ((xZ — )% (22 = b)(2%(2® + ax + b)2 — (a® — 4b)x4)>

2 ’ y3$2

_ <<x2 —b)? (22— b)(y* — (a® - 4b>x4>>

3

(22 = b)((a® + az +b)? — (a* — 4b)$2)>

(22 —b
Yy
(22 —b (2% — b) (2 + 2az® + 6bx? + 2abx + b?)
3
Ty
=2(-,%2)=2P
(478)

To show that ¢ o ¢(P) = 2(P), use that since ¢ is a homomorphism,

P(2P) = (P + P) = ¢(P) + ¢(P) = 2¢(P)
Thus,
¢ 0 ¢(P) = ¢ o d(¢(P)) = ¢(2P) = 2¢(P)
The above argument only works when x and y are not zero. Thus, need to check points of
order 2.

¢ o d(T) = ¢(0) =
¢ 0 p(0) =¢(0) =

Therefore, ¢ o ¢ is a multiplication by two map.

(@)
(@)
O

The description of the homomorphism ¢ shows that ¢ maps I' — . It is not obvious that
a given rational point in I' comes from a rational point in I. Thus, need to look at the image
of ¢. Denote the subgroup of rational points in I' obatined by applying ¢ to I' as ¢(T').

Claim:

(i) O € ¢(I) )
(i) T = (0,0) € ¢(I') if and only if b = a® — 4b is a perfect square.
(iii) Let P = (z,y) € I' with £ # 0. Then P € ¢(I') if and only if Z is the square of a rational

number.
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Proof. (i) Since ¢(O) = O and O €T, O € ¢(I).

(ii) In order for T = (0,0) € #(I'), need to find a point P in I' such that z(P) = g—i =0. If
x =0, then P =T = (0,0). This can not be the case because ¢(T) = O and not T. Thus,
need to find a point in I" such that y =0

0 =2+ az? + bz = z(2® + ax +b)
The case where z = 0 has already been ruled out. Thus, look at the case where 0 = 22+ ax+b.

By the quadratic formula, this equation has a non-zero rational root if and only if a® — 4b is
a perfect square.

(iii) Suppose P = (z,9) € I with Z # 0 and P € ¢(I'). Then Z = gé so T is the square of a
rational number.

Now suppose P = (z,7) € I with Z # 0 and & = w? where w is a rational number. Need to
find a point in I' that is mapped to P = (z,%). Since O and T are in the kernel of ¢, if (Z,¥)
is in ¢(I") then the points P = (z1,y1) and P> = (x2,y2) map to (Z,y) where

1 _
x1:7<w2—a+£>, Y1 = 1w
2 w
_1< 2 g) _
ro = -|\w —a——|, Y2 = —T2W
2 w

Since P; = (z1,y1) and Py = (x2, y2) are rational points, just need to show that P; = (z;,v;) €
C fori=1,2 and ¢(P;) = (Z,y). To show that P; is on C, need to show that

_ by
Ti=xitat— =%
€Ty {L‘Z-

Want to get b in terms of z;. It turns out that

z
_ 1(332 + 4bz —y2)
4 T
=b
This combined with the fact that % = tw from the definitions of y; and ys gives
2 b
Y% gitat—ouwd=2+a+m
x5 xX;

Thus, it suffices to show that w? = x1 + a + x5 is true. Using the definitions of 1 and o,

1 y 1 y
x1+a+x2=f(w2—a+£>+a+7<w2—a—g>
2 w 2 w
1

_ - 2 _
—2(w a+

2—i—wz—a—g)—i—a
w w
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2

=w
Now all that is left to show is for i = 1,2 and ¢(P;) = (Z,y). Thus, need to show
2 (22 —b
3% =1z and 7‘%(%2 ) _ 7
L L
Since % = +w and = w?,
2
Yi 2 -
L =w'==I
2

(2
Now, use b = z1x2 and definitions of yq, x1, 2, and xo to show vile;=b)

nGef =0 _ woled —nsa) gy (bt as 2) - Lw2—am D)) =y

7 x] 2 w

2 _yp _ 2 _ 1 Tl 1 7
yﬂ@Q ) _ @w@g‘”“):w@l—@):wﬁ(w?—m+ﬂ)—f@ﬂ—a—ﬂj):

x5 x5 2 w 2 w

If it can be shown that the indices (I' : ¢(T")) and (T : +/(T)) are finite, the fact that (I" : 2I")
is finite will follow. It will be enough to prove that one of these indicies is finite.

Proposition: Let Q* be the multiplicative group of non-zero rational numbers and let Q*2
denote the group of squares of elements of Q* such that

Q*? = {u?:ueQ}
Define a map « : I' — Q*/Q*? as follows:
1 modQ*? ifP=0
a(P)=<b mod Q** ifP=T
r mod Q2 if P = (z,y),r #0

(a) The map « : T' — Q*/Q*? described above is a homomorphism.

(b) The kernel of « is the image ¢ (I"). Hence « induces a one-to-one homomorphism

T/y(T) = Q*/Q*
(c) Let p1,p2,...,pt be the distinct primes dividing b. Then the image of « is contained in
the subgroup of Q*/Q*? consisting of the elements

€t

{Ep0py" - 1
(d) The index (T : ¥(I)) is at most 2+,

: each ¢; equals 0 or 1}

Proof. (a) Need to show that « is a homomorphism which amounts to proving that
a(Py+ Py) = a(Py)a(Ps) for all Py, P, €T
If P, or P, is O, then assuming P; = O without loss of generality,
a(Pi+P)=a(0+P)=a(P) =1-a(P;) =a(0)a(P)
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If P; or P»is T, then assuming P, = T without loss of generality, need to show that a(T+P) =
b-a(P)=0b-x. Since P is a point (z,y),

b by
P+T = (z,y)+ (0,0 :(—,——)
+T= () + 0.0 = (2%
Then,
b
P+T)="
o(P+T)="
Since a(P) =z =1 .22 =1 mod Q*2,
b 1
P+T)="=b-= =a(T) (P
a(P+T) =" =b- 1 =a(l)-a(P)
Hence, by this argument, o(T + P) = a(T) - «(P) unless P =T. Since a(T) =b= 1 - b* = 1
mod Q*2, then
b 1
a(T+T)=a(0)=1= 5= b-g =a(T) - o(T)
Now need to show that « takes negatives to negatives. Since —P = —(z,y) = (z, —y),
1 1 1
a(—P)=a(z,—y) =z =2*" = mod Q*? = o) =a(P)™' mod Q*

Thus, all that is left to show is that P + P + P3 = O implies that a(P)a(P)a(P3) =1
mod Q*? where P;, Py, P3 are not O or T. The equation P; + P> + P3 = O is equvalent
to saying that P;, P», P53 lie on a line that intersects C'. Suppose the equation for that line
is given by y = Axr + v, and the intersection points have x-coordinates x1,x2,x3. These
x-coordinates are roots of the equation

224+ (a—N)2® + (b—2 )z + (c—v*) =0
Therefore,
xr1 + X2 + 23 =N —q
T1To + XoT3 + Toxz = b — 2\
T1xox3 =12 — ¢
Since ¢ = 0, z129w3 = 2> = 1 mod Q*2. Hence a(P))a(Ps)a(P3)x12003 = 2 =1 mod Q*2.

(b) From the Claim, ¢(T') = {(z,y) € T : 2 € Q*} U {0} U{T?} (if b is a square). Thus, for
every point P in {(z,y) € T : z € Q*}, a(P) = 1 mod Q*2 since z is a square. By definition,
a(0) =1 mod Q*2. Since a(T) = b mod Q*?, if b is a square, a(T) = 1 mod Q*2. Thus,
the kernel of « is 1(T).

(c) Need to determine what rational numbers can be the x-coordinate of a point in I'. It is

m n

known that x = & and y = 5. Then,
(& €

nz m3 m2 m 9

y* = 2’ fax’+br < - =5 ta5 b5 & n" = m34+am?e?+bme* = m(m?+ame®+bet)
e e e e

This equation expresses a square as the product of two integers. Let d = ged(m, m? +ame? +
bet). Since d divides m and m? + ame? + be?, d must divide be*. Since the assumption is
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that m and e are relatively prime, then d divides b. Thus, every prime that divides m is of
e1._eo

even power except for perhaps primes that divide b. Thus, a(P) = » = 73 = +p7'p5® - - - pf’
mod Q*2 where each e; equals 0 or 1.

(d) The subgroup {£p{'p52---pf* : each e; equals 0 or 1} has exactly 2!7! elements where t is
the number of distinct primes dividing b. Since I'/+(T") maps one-to-one with the subgroup,
the index (I : 4(I)) is at most 2¢+1,
The proof for the finiteness of the index (I' : ¥(I')) is the same except putting bars on
everything.

O

Lemma: Let A and B be abelian groups, and supppose that ¢ : A — B and ¢ : B — A are
homomorphisms satisfying

pop(a)=2a forallac A and ¢otp(b)=2b forallbe B

Suppose further that ¢(A) has finite index in B and ¢ (B) has finite index in A. Then 24
has finite index in A. More precisesly, the indicies satisfy

(A:24) < (A:4(B))(B: ¢(4))

Proof. Since ¢(A) has finite index in B and ¢(B) has finite index in A, there are elements
b1,...,b, € B that represent the cosets ¢(A) in B and elements aq, ..., a, € A that represent
the cosets (B) in A. Thus, can find b € b; + ¢(A) for some 1 < i <n and a € a; +1)(B) for
some 1 < j < m. Suppose b =b; + ¢(a’) for some 1 < i < n and a’ € A and a = a; + ¥(b)
for some 1 < j <m and b € B. Then,

a=aj+Y(b)
= aj + ¥ (b + ¢(a’))
= aj +1(b;) + ¥ (¢(d))
=a; + P(b;) + 2a’
Therefore, a can be written as the sum of an element in the set {a; + ¥ (b;)|1 < j <m,1 <

i < n} and an element in 2A which implies that the set {a; + ¥(b;)|1 < j < m,1 <i < n}
contains all of the representatives of cosets of 24 in A. Thus, 24 has a finite index in A.

O

Notice that if A =T and B =T, the index [I" : 2I"] is finite. Thus, [C(Q) : 2C(Q)] is finite.

Mordell’s Theorem: Let C' be a non-singular cubic curve given by an equation
C:y?*=2°+ax® + b

where a and b are integers. Then the group of rational points C'(Q) is a finitely generated

abelian group.

Proof. Let Q1,Qo,...,Q, be representatives for the cosets in I'/2I". For all points P in
I', there exsists i¢; depending on P such that P — @;, € 2I". Since P is in one of the
cosets, say P — Q;, = 2P for P, € I'. Iterating this process shows that for Q;,,...,Q;,, €

{Ql,QQ,...,Qn} and Pl,...,PmGF,
P —Qi, =25
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P, —Q;, = 2P

Prn—1—Qi,, =2Py,
Now, rearranging and substituting the equations gives
P=Qi +2P = Qi +2Qi, +4P2 = ... Qi +2Qi, +4Qi; + -+ +277'Q;,, + 2" Py,
Applying Lemma 2 and replacing Py with —@); gives
h(P — Qi) < 2h(P) + K;
for all P € T'. Do this for each Q1,Q2,...,Qn. Take &’ := max{ki,...,k,}. This can be
done due to Lemma 4 which says that there are finitely many Q’s. Then,
h(P —Q;) < 2h(P)+ K
for all P € I" with 1 <7 <n. Now use Lemma 3.
h(2P,) > 4h(P}) —
& 4h(Pj) < h(2P)) + K
= h(Pj—1 — QZJ) + K
< 20(Pj_1)+ K + K

& h(P)) < h(P;‘l) LK =
_ 3h(Pjo1)  h(Pj1) — (K + k)

4 4

If h(Pj—1) > k' + &,
3h(P;_
h(P;) < (431)
This means that as long as h(P;j_1) > '+ £ for a point P}, the next point has a much smaller
height. This condition can be satisfied for any point because any number multiplied by %
repeatedly will get close to zero.
It has been shown that every element P € I' can be written as

P=a1Q1+a2Q2+ -+ anQn+2"R
for integers aq,...,a, and R such that h(R) > «’ + k. Therefore,
{Q1,Q2,...,Qu} U{RET : h(R) > K + K}

generates I'. By Lemma 1 and Lemma 4, this set if finite and thus finished the proof that I

is finitely generated.
O
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