The Hasse-Minkowski Theorem

John Ludlum

December 14, 2018

1 Introduction

A local-global principle is when the local properties of a mathematical object tell you something about the global properties of the object. Here are a few examples:

Ex: (Graph theory)

Theorem: (Euler, 1735) A connected graph has an Euler circuit if and only if every vertex has even degree.

Recall that an Euler circuit is a path starting and ending at the same vertex which traverses each edge of the graph exactly once. According to Euler’s Theorem, the left-hand graph in the diagram below has an Euler circuit because every vertex has degree 2, while the right-hand graph does not because the bottom two vertices have degree 3.

Euler’s Theorem is an example of a local-global principle: the degrees of the vertices of a connected graph (a local property) tell you whether or not the graph has an Euler circuit (a global property).
Ex: (Differential geometry)

The Gauss-Bonnet Theorem relates the Gaussian curvature of a compact two-dimensional Riemann manifold (a local property) to the Euler characteristic of the manifold (a global property).

Ex: (Number theory)

Let \(f(x) = x^3 - 3x + 17 \). Suppose we want to solve \(f(x) = 0 \) for \(x \in \mathbb{Z} \) (a global question). One approach is to look at the problem over the finite field \(\mathbb{Z}/5\mathbb{Z} \) (a local question). In \(\mathbb{Z}/5\mathbb{Z} \), the function \(f(x) \) becomes \(\tilde{f}(x) = x^3 + 3x + 2 \). Furthermore, we can check that the equation \(\tilde{f}(x) \equiv 0 \pmod{5} \) has no solutions:

\[
\tilde{f}(0) \equiv 2 \quad \tilde{f}(1) \equiv 1 \quad \tilde{f}(2) \equiv 1 \quad \tilde{f}(3) \equiv 3 \quad \tilde{f}(4) \equiv 3
\]

Now, we know the map

\[
\phi : \mathbb{Z} \rightarrow \mathbb{Z}/5\mathbb{Z} \quad x \mapsto x \pmod{5}
\]

is a ring homomorphism. This means that if \(f(a) = 0 \) for some \(a \in \mathbb{Z} \), then \(f(b) \equiv 0 \pmod{5} \) where \(b = \phi(a) \in \mathbb{Z}/5\mathbb{Z} \). But there are no such solutions \(b \) in \(\mathbb{Z}/5\mathbb{Z} \) which implies there are no solutions \(a \) in \(\mathbb{Z} \).

However, it is important to note that the converse is NOT true: a Diophantine equation may have solutions in \(\mathbb{Z}/n\mathbb{Z} \) but not in \(\mathbb{Z} \). For example, consider the function \(f(x, y) = 3x^2 + 6xy + y^2 \). Suppose we want to find the non-trivial solutions of \(f(x, y) = 0 \) for \((x, y) \in \mathbb{Z}^2 \). One can check that \((1, 0)\) and \((2, 0)\) are two non-trivial solutions in \((\mathbb{Z}/3\mathbb{Z})^2\). However, factoring \(f(x, y) \) over \(\mathbb{R} \), we get

\[
f(x, y) =
(3 + \sqrt{6})x + y
(3 - \sqrt{6})x + y
\]

In other words, \(f(x, y) \) is the product of two irrational lines, which means \(f(x, y) = 0 \) has no non-trivial solutions in \(\mathbb{Q}^2 \) and thus none in \(\mathbb{Z}^2 \).

The Hasse-Minkowski Theorem is a local-global principle that tells us when a quadratic equation such as the one above has rational solutions. In order to understand the theorem, we need to introduce the concept of \(p \)-adic numbers.

2 \(p \)-adic Numbers

Let \(x = \frac{a}{b} \in \mathbb{Q} \). Observe that we can write \(x = \frac{a'}{b'}p^n \) where \(p \) is prime, \(\frac{a'}{b'} \) is in lowest terms, \(p \not| a'b' \), and \(n \in \mathbb{Z} \). This leads us to the following definition:
Definition: The p-adic order of $x \in \mathbb{Q}$ is

$$
\nu_p(x) := \begin{cases}
 n & x \in \mathbb{Q} \setminus \{0\} \\
 \infty & x = 0
\end{cases}
$$

Informally stated, the p-adic order measures the degree n to which a prime p divides a rational number x. If $\nu_p(x) > 0$, then p divides a more than it divides b. If $\nu_p(x) < 0$, then p divides b more than it divides a.

Proposition: The p-adic order has the following properties: if $x, y \in \mathbb{Q}$, then

1. $\nu_p(xy) = \nu_p(x) + \nu_p(y)$
2. $\nu_p(x + y) \geq \min\{\nu_p(x), \nu_p(y)\}$

where the inequality in Property 2 is an equality if and only if $\nu_p(x) \neq \nu_p(y)$.

Proof: Let $x = \frac{a^'}{b^'} p^n$ and $y = \frac{c^'}{d^'} p^m$ as described at the beginning of the section. Without loss of generality, assume $n \leq m$. Then

$$
xy = \frac{a^'c^'}{b^'d^'} p^{n+m} \implies \nu_p(xy) = n + m = \nu_p(x) + \nu_p(y)
$$

$$
x + y = \left(\frac{a^'}{b^'} + \frac{c^'}{d^'} p^{m-n}\right) p^n \implies \nu_p(x + y) \geq n = \min\{\nu_p(x), \nu_p(y)\}
$$

This proves Properties 1 and 2. In addition, suppose n is strictly less than m which means that $\nu_p(x) \neq \nu_p(y)$. Then $\nu_p(x + y) \geq \min\{\nu_p(x), \nu_p(y)\} = \nu_p(x)$. However, $\nu_p(x) = \nu_p(x + y - y) \geq \min\{\nu_p(x + y), \nu_p(y)\}$. If $\min\{\nu_p(x + y), \nu_p(y)\} = \nu_p(y)$, then $\nu_p(y) > \nu_p(x) \geq \nu_p(y)$ which is impossible. Thus, $\min\{\nu_p(x + y), \nu_p(y)\} = \nu_p(x + y)$. So we have $\nu_p(x + y) > \nu_p(x)$ and $\nu_p(x) \geq \nu_p(x + y)$ which means that $\nu_p(x + y) = \nu_p(x) = \min\{\nu_p(x), \nu_p(y)\}$. This proves that the inequality in Property 2 is an equality if and only if $\nu_p(x) \neq \nu_p(y)$. \qed

Having established the p-adic order and two of its properties, we are ready for another definition:

Definition: The p-adic absolute value of $x \in \mathbb{Q}$ is

$$
|x|_p := \begin{cases}
 p^{-\nu_p(x)} & x \in \mathbb{Q} \setminus \{0\} \\
 0 & x = 0
\end{cases}
$$
Proposition: The p-adic absolute value has the following properties: if \(x, y \in \mathbb{Q} \), then

1. \(|x|_p = 0 \iff x = 0 \)
2. \(|xy|_p = |x|_p |y|_p \)
3. \(|x + y|_p \leq \max\{|x|_p, |y|_p\} \)

Proof: Property 1 is true by the way \(|x|_p\) is defined. Next, observe that

\[
|x|_p \cdot |y|_p = p^{-\nu_p(x)} p^{-\nu_p(y)} = p^{-\left(\nu_p(x) + \nu_p(y)\right)} = |xy|_p
\]

which proves Property 2. Finally, without loss of generality, let \(\max\{|x|_p, |y|_p\} = |x|_p \). This implies that

\[
|x|_p \geq |y|_p \implies p^{-\nu_p(x)} \geq p^{-\nu_p(y)} \implies \nu_p(x) \leq \nu_p(y)
\]

So \(\nu_p(x) = \min\{\nu_p(x), \nu_p(y)\} \leq \nu_p(x + y) \). Thus,

\[
\max\{|x|_p, |y|_p\} = |x|_p = p^{-\nu_p(x)} \geq p^{-\left(\nu_p(x) + \nu_p(y)\right)} = |x + y|_p.
\]

This proves Property 3. \(\square\)

These properties of the p-adic absolute value imply that the p-adic absolute value is a metric (in fact, an ultrametric) on \(\mathbb{Q} \) if we let \(d(x, y) = |x - y|_p \). This leads us to two final definitions:

Definition: A **p-adic Cauchy sequence** is a sequence \(\{x_n\}_{n=1}^\infty \) in \(\mathbb{Q} \) such that

\[
\forall \epsilon > 0, \exists N \in \mathbb{N} : \forall n, m \geq N, \quad |x_n - x_m|_p < \epsilon
\]

Definition: The **p-adic rational numbers** \(\mathbb{Q}_p \) are defined as the completion of \(\mathbb{Q} \) with respect to the p-adic absolute value \(|\cdot|_p\). That is, if \(\mathcal{C}_p \) is the set of p-adic Cauchy sequences in \(\mathbb{Q} \), then

\[
\mathbb{Q}_p := \left\{ \lim_{n \to \infty} x_n \mid \{x_n\}_{n=1}^\infty \in \mathcal{C}_p \right\}.
\]

This analytic construction of \(\mathbb{Q}_p \) is analogous to how we may define \(\mathbb{R} \) to be the set of limits of standard Cauchy sequences in \(\mathbb{Q} \).
3 Hensel’s Lemma, Chevalley-Warning Theorem

Lemma: (Hensel) Let \(p \) be a prime, \(f(x) \in \mathbb{Z}[x] \), and \(m, k \in \mathbb{N} \) where \(m \leq k \). If \(\exists r \in \mathbb{Z} \) such that \(f(r) \equiv 0 \ (mod \ p^k) \) and \(f'(r) \not\equiv 0 \ (mod \ p) \), then \(\exists s \in \mathbb{Z} \) such that \(f(s) \equiv 0 \ (mod \ p^{k+m}) \) where \(s \equiv r \ (mod \ p^k) \). Furthermore, \(s \) is unique \((mod \ p^{k+m}) \).

Proof: Consider the Taylor expansion of \(f(x) \) about the point \(x = r \):

\[
f(x) = f(r) + f'(r)(x-r) + \frac{f''(r)}{2!}(x-r)^2 + ...
\]

This Taylor series is just the sum of \(N \) terms where \(N = \text{deg}(f) \), so we don’t have to worry about convergence issues. Now, the fact that we have \(s \equiv r \ (mod \ p^k) \) in Hensel’s Lemma suggests that \(s = r + p^k t \) for some \(t \in \mathbb{Z} \). We need to prove that \(t \) exists.

If we substitute \(s = r + p^k t \) into the Taylor expansion above, we get

\[
f(s) = f(r + p^k t) = f(r) + f'(r)p^kt + \frac{f''(r)}{2!}p^{2k}t^2 + ...
\]

\[
\equiv f(r) + f'(r)p^kt \ (mod \ p^{k+m}).
\]

In order for \(f(s) \equiv 0 \ (mod \ p^{k+m}) \) to hold, it must be that

\[
0 \equiv f(r) + f'(r)p^kt \ (mod \ p^{k+m}).
\]

Observe that \(f(r) = p^k a \) for some \(a \in \mathbb{Z} \) since \(f(r) \equiv 0 \ (mod \ p^k) \). This means that

\[
0 \equiv (a + tf'(r))p^k \ (mod \ p^{k+m}) \equiv a + tf'(r) \ (mod \ p^m).
\]

Since \(f'(r) \not\equiv 0 \ (mod \ p) \), \(f'(r)^{-1} \) exists \((mod \ p^m) \), which means we can solve for \(t \) in the equation above. This proves that \(t \) exists. Furthermore, the uniqueness of \(a \) and \(f'(r) \) guarantee the uniqueness of \(t \) and thus \(s \ (mod \ p^{k+m}) \). \(\square \)

Theorem: (Chevalley-Warning) Let \(K \) be a field of characteristic \(p \) and let \(f_1, \ldots, f_n \in K[x_1, \ldots, x_n] \) be polynomials in \(n \) variables such that the \(\sum_{k=1}^{n} \text{deg}(f_k) < n \). If \(V \) is the set of common zeros of \(f_1, \ldots, f_n \) in \(K^n \), then \(\text{Card} \ V \equiv 0 \ (mod \ p) \).

Proof: Jean-Pierre Serre, A Course in Arithmetic, pg. 5
4 The Hasse-Minkowski Theorem

We are now in a position to state the Hasse-Minkowski Theorem.

Definition: A quadratic form f over a field K is a homogeneous degree-2 polynomial with coefficients in K:

$$f(x_1, ..., x_n) = \sum_{1 \leq i,j \leq n} \alpha_{ij} x_i x_j \quad \alpha_{ij} \in K$$

f is said to represent zero if $\exists (a_1, ..., a_n) \in K^n$ such that $f(a_1, ... a_n) = 0$.

Theorem: (Hasse-Minkowski) A quadratic form f represents 0 over \mathbb{Q} if and only if f represents 0 over \mathbb{R} and \mathbb{Q}_p for all primes p.

Remark: The Hasse-Minkowski Theorem is a local-global principle: if we want to know if a quadratic form represents 0 over \mathbb{Q} (a global property), we can check if it represents 0 over \mathbb{R} and \mathbb{Q}_p (local properties).

The proof of the Hasse-Minkowski Theorem is typically done by dividing all quadratic forms into five cases: $n = 1, 2, 3, 4$ and $n \geq 5$ where n is the number of variables in the quadratic form. In this paper, I will not prove the Hasse-Minkowski Theorem. However, I will present an example of how to use the theorem to solve problems which incorporates Hensel’s Lemma and the Chevalley-Warning Theorem.

Ex: Consider the quadratic form $f(x,y,z) = 5x^2 + 7y^2 - 13z^2$. Suppose we want to know if the equation $f(x,y,z) = 0$ has a non-trivial solution in \mathbb{Q}^3.

First, observe that $f(x,y,z) = 0$ has the non-trivial solution $(1, 0, \sqrt{5/13})$ in \mathbb{R}^3.

Next, let p be a prime, $p \neq 2, 5, 7, 13$. Observe that the number of variables of $f(x,y,z)$ is 3 (mod p) because $p \neq 5, 7, 13$, which means $\text{deg} f < 3$ (mod p). Furthermore, $f(x,y,z) \equiv 0$ (mod p) has at least one solution, i.e. the trivial solution $(0,0,0)$. By the Chevalley-Warning Theorem, there is also a non-trivial solution (x_0, y_0, z_0) since the number of zeros must be 0 (mod p).

Without loss of generality, assume x_0 is the non-zero value in (x_0, y_0, z_0). In other words, $x_0 \not\equiv 0$ (mod p). If we let $g(x) = 5x^2 + 7y_0^2 - 13z_0^2$, then $g(x_0) \equiv 0$ (mod p). Furthermore, $g'(x_0) \not\equiv 0$ (mod p) because $g'(x_0) = 10x = 2 \cdot 5 \cdot x_0$ and $p \nmid 2 \cdot 5 \cdot x_0$. By Hensel’s Lemma, the solution (x_0, y_0, z_0) lifts to a solution (\tilde{x}, y_0, z_0) in \mathbb{Q}_p^3 for all primes p.

In the cases that $p = 2, 5, 7, 13$, after a bit of guessing, one finds that $(1,0,1)$ is a non-trivial solution (mod 2), $(0,2,1)$ is a non-trivial solution (mod 5), $(2,0,1)$ is a non-trivial solution (mod 7), and $(3,1,0)$ is a non-trivial solution (mod 13).
Performing the same process as when \(p \neq 2, 5, 7, 13 \), we can use Hensel’s Lemma to lift these solutions to \(\mathbb{Q}_p^3 \) for all primes \(p \). We just need to define a single variable polynomial \(g \) for each solution and check that \(g' \neq 0 \) at the point in question.

Since \(f \) represents 0 in \(\mathbb{R}^3 \) and \(\mathbb{Q}_p^3 \) for all primes \(p \), by the Hasse-Minkowski Theorem, \(f \) represents 0 in \(\mathbb{Q}^3 \).

Remark: Unfortunately, the Hasse-Minkowski Theorem is not necessarily true for higher-degree polynomials. For example, in 1951, Ernst Selmer showed that the homogeneous degree-3 polynomial \(f(x, y, z) = 3x^3 + 4y^3 + 5z^3 \) represents zero in \(\mathbb{R} \) and \(\mathbb{Q}_p \) for all primes \(p \) but not in \(\mathbb{Q} \). Determining why the Hasse-Minkowski Theorem fails for certain higher-degree polynomials is an area of active research.

5 References

