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1 Introduction

A local-global principle is when the local properties of a mathematical object tell
you something about the global properties of the object. Here are a few examples:

Ex: (Graph theory)

Theorem: (Euler, 1735) A connected graph has an Euler circuit if and only if
every vertex has even degree.

Recall that an Euler circuit is a path starting and ending at the same vertex which
traverses each edge of the graph exactly once. According to Euler’s Theorem, the
left-hand graph in the diagram below has an Euler circuit because every vertex has
degree 2, while the right-hand graph does not because the bottom two vertices have
degree 3.

Euler’s Theorem is an example of a local-global principle: the degrees of the vertices
of a connected graph (a local property) tell you whether or not the graph has an
Euler circuit (a global property).
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Ex: (Differential geometry)

The Gauss-Bonnet Theorem relates the Gaussian curvature of a compact two-
dimensional Riemann manifold (a local property) to the Euler characteristic of the
manifold (a global property).

Ex: (Number theory)

Let f(x) = x3 − 3x + 17. Suppose we want to solve f(x) = 0 for x ∈ Z (a global
question). One approach is to look at the problem over the finite field Z/5Z (a local
question). In Z/5Z, the function f(x) becomes f̃(x) = x3 + 3x + 2. Furthermore,
we can check that the equation f̃(x) ≡ 0 (mod 5) has no solutions:

f̃(0) ≡ 2 f̃(1) ≡ 1 f̃(2) ≡ 1 f̃(3) ≡ 3 f̃(4) ≡ 3

Now, we know the map

φ : Z −→ Z/5Z x 7−→ x (mod 5)

is a ring homomorphism. This means that if f(a) = 0 for some a ∈ Z, then f(b) ≡ 0
(mod 5) where b = φ(a) ∈ Z/5Z. But there are no such solutions b in Z/5Z which
implies there are no solutions a in Z.

However, it is important to note that the converse is NOT true: a Diophantine
equation may have solutions in Z/nZ but not in Z. For example, consider the
function f(x, y) = 3x2+6xy+ y2. Suppose we want to find the non-trivial solutions
of f(x, y) = 0 for (x, y) ∈ Z2. One can check that (1, 0) and (2, 0) are two non-trivial
solutions in (Z/3Z)2. However, factoring f(x, y) over R, we get

f(x, y) =
(
(3 +

√
6)x+ y

)(
(3−

√
6)x+ y

)
In other words, f(x, y) is the product of two irrational lines, which means f(x, y) = 0
has no non-trivial solutions in Q2 and thus none in Z2.

The Hasse-Minkowski Theorem is a local-global principle that tells us when a quadratic
equation such as the one above has rational solutions. In order to understand the
theorem, we need to introduce the concept of p-adic numbers.

2 p-adic Numbers

Let x =
a

b
∈ Q. Observe that we can write x =

a ′

b ′
pn where p is prime,

a′

b ′
is in

lowest terms, p 6 | a ′b ′, and n ∈ Z. This leads us to the following definition:
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Definition: The p-adic order of x ∈ Q is

νp(x) :=

{
n x ∈ Q \ {0}
∞ x = 0

Informally stated, the p-adic order measures the degree n to which a prime p di-
vides a rational number x. If νp(x) > 0, then p divides a more than it divides b. If
νp(x) < 0, then p divides b more than it divides a.

Proposition: The p-adic order has the following properties: if x, y ∈ Q, then

1. νp(xy) = νp(x) + νp(y)

2. νp(x+ y) ≥ min{νp(x), νp(y)}

where the inequality in Property 2 is an equality if and only if νp(x) 6= νp(y).

Proof: Let x =
a ′

b ′
pn and y =

c ′

d ′
pm as described at the beginning of the section.

Without loss of generality, assume n ≤ m. Then

xy =
a ′c ′

b ′d ′
pn+m =⇒ νp(xy) = n+m = νp(x) + νp(y)

x+y =
(a ′
b ′
+
c ′

d ′
pm−n

)
pn =⇒ νp(x+y) ≥ n = min{νp(x), νp(y)}

This proves Properties 1 and 2. In addition, suppose n is strictly less than m which
means that νp(x) 6= νp(y). Then νp(x + y) ≥ min{νp(x), νp(y)} = νp(x). However,
νp(x) = νp(x + y − y) ≥ min{νp(x + y), νp(y)}. If min{νp(x + y), νp(y)} = νp(y),
then νp(y) > νp(x) ≥ νp(y) which is impossible. Thus, min{νp(x + y), νp(y)} =
νp(x + y). So we have νp(x + y) ≥ νp(x) and νp(x) ≥ νp(x + y) which means that
νp(x+ y) = νp(x) = min{νp(x), νp(y)}. This proves that the inequality in Property
2 is an equality if and only if νp(x) 6= νp(y). �

Having established the p-adic order and two of its properties, we are ready for
another definition:

Definition: The p-adic absolute value of x ∈ Q is

|x|p :=

{
p−νp(x) x ∈ Q \ {0}
0 x = 0
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Proposition: The p-adic absolute value has the following properties: if x, y ∈ Q,
then

1. |x|p = 0 ⇐⇒ x = 0

2. |xy|p = |x|p |y|p
3. |x+ y|p ≤ max{|x|p, |y|p}

Proof: Property 1 is true by the way |x|p is defined. Next, observe that

|x|p |y|p = p−νp(x) p−νp(y) = p−
(
νp(x)+νp(y)

)
= |xy|p

which proves Property 2. Finally, without loss of generality, let max{|x|p, |y|p} =
|x|p. This implies that

|x|p ≥ |y|p =⇒ p−νp(x) ≥ p−νp(y) =⇒ νp(x) ≤ νp(y)

So νp(x) = min{νp(x), νp(y)} ≤ νp(x+ y). Thus,

max{|x|p, |y|p} = |x|p = p−vp(x) ≥ p−
(
νp(x)+νp(y)

)
= |x+ y|p .

This proves Property 3. �

These properties of the p-adic absolute value imply that the p-adic absolute value
is a metric (in fact, an ultrametric) on Q if we let d(x, y) = |x− y|p. This leads us
to two final definitions:

Definition: A p-adic Cauchy sequence is a sequence {xn}∞n=1 in Q such that

∀ε > 0, ∃N ∈ N : ∀ n,m ≥ N, |xn − xm|p < ε

Definition: The p-adic rational numbers Qp are defined as the completion of Q
with respect to the p-adic absolute value | · |p . That is, if Cp is the set of p-adic
Cauchy sequences in Q, then

Qp :=
{

lim
n→∞

xn

∣∣∣ {xn}∞n=1 ∈ Cp
}
.

This analytic construction of Qp is analogous to how we may define R to be the set
of limits of standard Cauchy sequences in Q.
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3 Hensel’s Lemma, Chevalley-Warning Theorem

Lemma: (Hensel) Let p be a prime, f(x) ∈ Z[x], and m, k ∈ N where m ≤ k. If
∃ r ∈ Z such that f(r) ≡ 0 (mod pk) and f ′(r) 6≡ 0 (mod p), then ∃ s ∈ Z such that
f(s) ≡ 0 (mod pk+m) where s ≡ r (mod pk). Furthermore, s is unique (mod pk+m).

Proof: Consider the Taylor expansion of f(x) about the point x = r:

f(x) = f(r) + f ′(r)(x− r) + f ′′(r)

2!
(x− r)2 + ...

This Taylor series is just the sum of N terms where N = deg(f), so we don’t have
to worry about convergence issues. Now, the fact that we have s ≡ r (mod pk) in
Hensel’s Lemma suggests that s = r + pkt for some t ∈ Z. We need to prove that t
exists.

If we substitute s = r + pkt into the Taylor expansion above, we get

f(s) = f(r + pkt) = f(r) + f ′(r)pkt+
f ′′(r)

2!
p2kt2 + ...

≡ f(r) + f ′(r)pkt (mod pk+m).

In order for f(s) ≡ 0 (mod pk+m) to hold, it must be that

0 ≡ f(r) + f ′(r)pkt (mod pk+m).

Observe that f(r) = pka for some a ∈ Z since f(r) ≡ 0 (mod pk). This means
that

0 ≡
(
a+ tf ′(r)

)
pk (mod pk+m) ≡ a+ tf ′(r) (mod pm).

Since f ′(r) 6≡ 0 (mod p), f ′(r)−1 exists (mod pm), which means we can solve for t
in the equation above. This proves that t exists. Furthermore, the uniqueness of a
and f ′(r) guarantee the uniqueness of t and thus s (mod pk+m). �

Theorem: (Chevalley-Warning) Let K be a field of characteristic p and let
f1, ..., fn ∈ K[x1, ...xn] be polynomials in n variables such that the

∑n
k=1 deg(fk) < n.

If V is the set of common zeros of f1, ..., fn in Kn, then Card V ≡ 0 (mod p).

Proof: Jean-Pierre Serre, A Course in Arithmetic, pg. 5
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4 The Hasse-Minkowski Theorem

We are now in a position to state the Hasse-Minkowski Theorem.

Definition: A quadratic form f over a fieldK is a homogeneous degree-2 polynomial
with coefficients in K:

f(x1, ..., xn) =
∑

1≤i,j≤n

αij xixj αij ∈ K

f is said to represent zero if ∃ (a1, ..., an) ∈ Kn such that f(a1, ...an) = 0.

Theorem: (Hasse-Minkowski) A quadratic form f represents 0 over Q if and
only if f represents 0 over R and Qp for all primes p.

Remark: The Hasse-Minkowski Theorem is a local-global principle: if we want to
know if a quadratic form represents 0 over Q (a global property), we can check if it
represents 0 over R and Qp (local properties).

The proof of the Hasse-Minkowski Theorem is typically done by dividing all quadratic
forms into five cases: n = 1, 2, 3, 4 and n ≥ 5 where n is the number of variables in
the quadratic form. In this paper, I will not prove the Hasse-Minkowski Theorem.
However, I will present an example of how to use the theorem to solve problems
which incorporates Hensel’s Lemma and the Chevalley-Warning Theorem.

Ex: Consider the quadratic form f(x, y, z) = 5x2 +7y2− 13z2. Suppose we want
to know if the equation f(x, y, z) = 0 has a non-trivial solution in Q3.

First, observe that f(x, y, z) = 0 has the non-trivial solution (1, 0,
√
5/13) in R3.

Next, let p be a prime, p 6= 2, 5, 7, 13. Observe that the number of variables of
f(x, y, z) is 3 (mod p) because p 6= 5, 7, 13, which means degf < 3 (mod p). Fur-
thermore, f(x, y, z) ≡ 0 (mod p) has at least one solution, i.e. the trivial solution
(0, 0, 0). By the Chevalley-Warning Theorem, there is also a non-trivial solution
(x0, y0, z0) since the number of zeros must be 0 (mod p).

Without loss of generality, assume x0 is the non-zero value in (x0, y0, z0). In other
words, x0 6≡ 0 (mod p). If we let g(x) = 5x2 + 7y20 − 13z20 , then g(x0) ≡ 0 (mod p).
Furthermore, g′(x0) 6≡ 0 (mod p) because g′(x0) = 10x = 2 · 5 · x0 and p 6 | 2 · 5 · x0.
By Hensel’s Lemma, the solution (x0, y0, z0) lifts to a solution (x̃, y0, z0) in Q3

p for
all primes p.

In the cases that p = 2, 5, 7, 13, after a bit of guessing, one finds that (1, 0, 1) is a
non-trivial solution (mod 2), (0, 2, 1) is a non-trivial solution (mod 5), (2, 0, 1) is a
non-trivial solution (mod 7), and (3, 1, 0) is a non-trivial solution (mod 13).
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Performing the same process as when p 6= 2, 5, 7, 13, we can use Hensel’s Lemma to
lift these solutions to Q3

p for all primes p. We just need to define a single variable
polynomial g for each solution and check that g′ 6= 0 at the point in question.

Since f represents 0 in R3 and Q3
p for all primes p, by the Hasse-Minkowski Theorem,

f represents 0 in Q3.

Remark: Unfortunately, the Hasse-Minkowski Theorem is not necessarily true for
higher-degree polynomials. For example, in 1951, Ernst Selmer showed that the
homogeneous degree-3 polynomial f(x, y, z) = 3x3 + 4y3 + 5z3 represents zero in
R and Qp for all primes p but not in Q. Determining why the Hasse-Minkowski The-
orem fails for certain higher-degree polynomials is an area of active research.
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