The Hasse-Minkowski Theorem

John Ludlum

December 14, 2018

1 Introduction

A local-global principle is when the local properties of a mathematical object tell you something about the global properties of the object. Here are a few examples:

Ex: (Graph theory)

Theorem: (Euler, 1735) A connected graph has an Euler circuit if and only if every vertex has even degree.
Recall that an Euler circuit is a path starting and ending at the same vertex which traverses each edge of the graph exactly once. According to Euler's Theorem, the left-hand graph in the diagram below has an Euler circuit because every vertex has degree 2, while the right-hand graph does not because the bottom two vertices have degree 3.

Euler's Theorem is an example of a local-global principle: the degrees of the vertices of a connected graph (a local property) tell you whether or not the graph has an Euler circuit (a global property).

Ex: (Differential geometry)
The Gauss-Bonnet Theorem relates the Gaussian curvature of a compact twodimensional Riemann manifold (a local property) to the Euler characteristic of the manifold (a global property).

Ex: (Number theory)

Let $f(x)=x^{3}-3 x+17$. Suppose we want to solve $f(x)=0$ for $x \in \mathbb{Z}$ (a global question). One approach is to look at the problem over the finite field $\mathbb{Z} / 5 \mathbb{Z}$ (a local question). In $\mathbb{Z} / 5 \mathbb{Z}$, the function $f(x)$ becomes $\tilde{f}(x)=x^{3}+3 x+2$. Furthermore, we can check that the equation $\tilde{f}(x) \equiv 0(\bmod 5)$ has no solutions:

$$
\tilde{f}(0) \equiv 2 \quad \tilde{f}(1) \equiv 1 \quad \tilde{f}(2) \equiv 1 \quad \tilde{f}(3) \equiv 3 \quad \tilde{f}(4) \equiv 3
$$

Now, we know the map

$$
\phi: \mathbb{Z} \longrightarrow \mathbb{Z} / 5 \mathbb{Z} \quad x \longmapsto x(\bmod 5)
$$

is a ring homomorphism. This means that if $f(a)=0$ for some $a \in \mathbb{Z}$, then $f(b) \equiv 0$ $(\bmod 5)$ where $b=\phi(a) \in \mathbb{Z} / 5 \mathbb{Z}$. But there are no such solutions b in $\mathbb{Z} / 5 \mathbb{Z}$ which implies there are no solutions a in \mathbb{Z}.

However, it is important to note that the converse is NOT true: a Diophantine equation may have solutions in $\mathbb{Z} / n \mathbb{Z}$ but not in \mathbb{Z}. For example, consider the function $f(x, y)=3 x^{2}+6 x y+y^{2}$. Suppose we want to find the non-trivial solutions of $f(x, y)=0$ for $(x, y) \in \mathbb{Z}^{2}$. One can check that $(1,0)$ and $(2,0)$ are two non-trivial solutions in $(\mathbb{Z} / 3 \mathbb{Z})^{2}$. However, factoring $f(x, y)$ over \mathbb{R}, we get

$$
f(x, y)=((3+\sqrt{6}) x+y)((3-\sqrt{6}) x+y)
$$

In other words, $f(x, y)$ is the product of two irrational lines, which means $f(x, y)=0$ has no non-trivial solutions in \mathbb{Q}^{2} and thus none in \mathbb{Z}^{2}.

The Hasse-Minkowski Theorem is a local-global principle that tells us when a quadratic equation such as the one above has rational solutions. In order to understand the theorem, we need to introduce the concept of p-adic numbers.

2 p-adic Numbers

Let $x=\frac{a}{b} \in \mathbb{Q}$. Observe that we can write $x=\frac{a^{\prime}}{b^{\prime}} p^{n}$ where p is prime, $\frac{a^{\prime}}{b^{\prime}}$ is in lowest terms, $p \nmid a^{\prime} b^{\prime}$, and $n \in \mathbb{Z}$. This leads us to the following definition:

Definition: The p-adic order of $x \in \mathbb{Q}$ is

$$
\nu_{p}(x):= \begin{cases}n & x \in \mathbb{Q} \backslash\{0\} \\ \infty & x=0\end{cases}
$$

Informally stated, the p-adic order measures the degree n to which a prime p divides a rational number x. If $\nu_{p}(x)>0$, then p divides a more than it divides b. If $\nu_{p}(x)<0$, then p divides b more than it divides a.

Proposition: The p-adic order has the following properties: if $x, y \in \mathbb{Q}$, then

1. $\nu_{p}(x y)=\nu_{p}(x)+\nu_{p}(y)$
2. $\quad \nu_{p}(x+y) \geq \min \left\{\nu_{p}(x), \nu_{p}(y)\right\}$
where the inequality in Property 2 is an equality if and only if $\nu_{p}(x) \neq \nu_{p}(y)$.
Proof: Let $x=\frac{a^{\prime}}{b^{\prime}} p^{n}$ and $y=\frac{c^{\prime}}{d^{\prime}} p^{m}$ as described at the beginning of the section. Without loss of generality, assume $n \leq m$. Then

$$
\begin{array}{ll}
x y=\frac{a^{\prime} c^{\prime}}{b^{\prime} d^{\prime}} p^{n+m} \quad \Longrightarrow \quad \nu_{p}(x y)=n+m=\nu_{p}(x)+\nu_{p}(y) \\
x+y=\left(\frac{a^{\prime}}{b^{\prime}}+\frac{c^{\prime}}{d^{\prime}} p^{m-n}\right) p^{n} & \Longrightarrow \quad \nu_{p}(x+y) \geq n=\min \left\{\nu_{p}(x), \nu_{p}(y)\right\}
\end{array}
$$

This proves Properties 1 and 2. In addition, suppose n is strictly less than m which means that $\nu_{p}(x) \neq \nu_{p}(y)$. Then $\nu_{p}(x+y) \geq \min \left\{\nu_{p}(x), \nu_{p}(y)\right\}=\nu_{p}(x)$. However, $\nu_{p}(x)=\nu_{p}(x+y-y) \geq \min \left\{\nu_{p}(x+y), \nu_{p}(y)\right\}$. If $\min \left\{\nu_{p}(x+y), \nu_{p}(y)\right\}=\nu_{p}(y)$, then $\nu_{p}(y)>\nu_{p}(x) \geq \nu_{p}(y)$ which is impossible. Thus, $\min \left\{\nu_{p}(x+y), \nu_{p}(y)\right\}=$ $\nu_{p}(x+y)$. So we have $\nu_{p}(x+y) \geq \nu_{p}(x)$ and $\nu_{p}(x) \geq \nu_{p}(x+y)$ which means that $\nu_{p}(x+y)=\nu_{p}(x)=\min \left\{\nu_{p}(x), \nu_{p}(y)\right\}$. This proves that the inequality in Property 2 is an equality if and only if $\nu_{p}(x) \neq \nu_{p}(y)$.

Having established the p-adic order and two of its properties, we are ready for another definition:

Definition: The p-adic absolute value of $x \in \mathbb{Q}$ is

$$
|x|_{p}:= \begin{cases}p^{-\nu_{p}(x)} & x \in \mathbb{Q} \backslash\{0\} \\ 0 & x=0\end{cases}
$$

Proposition: The p -adic absolute value has the following properties: if $x, y \in \mathbb{Q}$, then

1. $|x|_{p}=0 \Longleftrightarrow x=0$
2. $\quad|x y|_{p}=|x|_{p}|y|_{p}$
3. $|x+y|_{p} \leq \max \left\{|x|_{p},|y|_{p}\right\}$

Proof: Property 1 is true by the way $|x|_{p}$ is defined. Next, observe that

$$
|x|_{p}|y|_{p}=p^{-\nu_{p}(x)} p^{-\nu_{p}(y)}=p^{-\left(\nu_{p}(x)+\nu_{p}(y)\right)}=|x y|_{p}
$$

which proves Property 2. Finally, without loss of generality, let $\max \left\{|x|_{p},|y|_{p}\right\}=$ $|x|_{p}$. This implies that

$$
|x|_{p} \geq|y|_{p} \quad \Longrightarrow \quad p^{-\nu_{p}(x)} \geq p^{-\nu_{p}(y)} \quad \Longrightarrow \quad \nu_{p}(x) \leq \nu_{p}(y)
$$

So $\quad \nu_{p}(x)=\min \left\{\nu_{p}(x), \nu_{p}(y)\right\} \leq \nu_{p}(x+y)$. Thus,

$$
\max \left\{|x|_{p},|y|_{p}\right\}=|x|_{p}=p^{-v_{p}(x)} \geq p^{-\left(\nu_{p}(x)+\nu_{p}(y)\right)}=|x+y|_{p} .
$$

This proves Property 3.

These properties of the p -adic absolute value imply that the p -adic absolute value is a metric (in fact, an ultrametric) on \mathbb{Q} if we let $d(x, y)=|x-y|_{p}$. This leads us to two final definitions:

Definition: A p-adic Cauchy sequence is a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in \mathbb{Q} such that

$$
\forall \epsilon>0, \quad \exists N \in \mathbb{N}: \quad \forall n, m \geq N, \quad\left|x_{n}-x_{m}\right|_{p}<\epsilon
$$

Definition: The p-adic rational numbers \mathbb{Q}_{p} are defined as the completion of \mathbb{Q} with respect to the p-adic absolute value $|\cdot|_{p}$. That is, if \mathcal{C}_{p} is the set of p -adic Cauchy sequences in \mathbb{Q}, then

$$
\mathbb{Q}_{p}:=\left\{\lim _{n \rightarrow \infty} x_{n} \mid\left\{x_{n}\right\}_{n=1}^{\infty} \in \mathcal{C}_{p}\right\} .
$$

This analytic construction of \mathbb{Q}_{p} is analogous to how we may define \mathbb{R} to be the set of limits of standard Cauchy sequences in \mathbb{Q}.

3 Hensel's Lemma, Chevalley-Warning Theorem

Lemma: (Hensel) Let p be a prime, $f(x) \in \mathbb{Z}[x]$, and $m, k \in \mathbb{N}$ where $m \leq k$. If $\exists r \in \mathbb{Z}$ such that $f(r) \equiv 0\left(\bmod p^{k}\right)$ and $f^{\prime}(r) \not \equiv 0(\bmod p)$, then $\exists s \in \mathbb{Z}$ such that $f(s) \equiv 0\left(\bmod p^{k+m}\right)$ where $s \equiv r\left(\bmod p^{k}\right)$. Furthermore, s is unique $\left(\bmod p^{k+m}\right)$.

Proof: Consider the Taylor expansion of $f(x)$ about the point $x=r$:

$$
f(x)=f(r)+f^{\prime}(r)(x-r)+\frac{f^{\prime \prime}(r)}{2!}(x-r)^{2}+\ldots
$$

This Taylor series is just the sum of N terms where $N=\operatorname{deg}(f)$, so we don't have to worry about convergence issues. Now, the fact that we have $s \equiv r\left(\bmod p^{k}\right)$ in Hensel's Lemma suggests that $s=r+p^{k} t$ for some $t \in \mathbb{Z}$. We need to prove that t exists.

If we substitute $s=r+p^{k} t$ into the Taylor expansion above, we get

$$
\begin{aligned}
f(s)=f\left(r+p^{k} t\right) & =f(r)+f^{\prime}(r) p^{k} t+\frac{f^{\prime \prime}(r)}{2!} p^{2 k} t^{2}+\ldots \\
& \equiv f(r)+f^{\prime}(r) p^{k} t\left(\bmod p^{k+m}\right)
\end{aligned}
$$

In order for $f(s) \equiv 0\left(\bmod p^{k+m}\right)$ to hold, it must be that

$$
0 \equiv f(r)+f^{\prime}(r) p^{k} t\left(\bmod p^{k+m}\right) .
$$

Observe that $f(r)=p^{k} a$ for some $a \in \mathbb{Z}$ since $f(r) \equiv 0\left(\bmod p^{k}\right)$. This means that

$$
0 \equiv\left(a+t f^{\prime}(r)\right) p^{k}\left(\bmod p^{k+m}\right) \equiv a+t f^{\prime}(r)\left(\bmod p^{m}\right) .
$$

Since $f^{\prime}(r) \not \equiv 0(\bmod p), f^{\prime}(r)^{-1}$ exists $\left(\bmod p^{m}\right)$, which means we can solve for t in the equation above. This proves that t exists. Furthermore, the uniqueness of a and $f^{\prime}(r)$ guarantee the uniqueness of t and thus $s\left(\bmod p^{k+m}\right)$.

Theorem: (Chevalley-Warning) Let K be a field of characteristic p and let $f_{1}, \ldots, f_{n} \in K\left[x_{1}, \ldots x_{n}\right]$ be polynomials in n variables such that the $\sum_{k=1}^{n} \operatorname{deg}\left(f_{k}\right)<n$. If V is the set of common zeros of f_{1}, \ldots, f_{n} in K^{n}, then $\operatorname{Card} V \equiv 0(\bmod p)$.

Proof: Jean-Pierre Serre, A Course in Arithmetic, pg. 5

4 The Hasse-Minkowski Theorem

We are now in a position to state the Hasse-Minkowski Theorem.

Definition: A quadratic form f over a field K is a homogeneous degree-2 polynomial with coefficients in K :

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i, j \leq n} \alpha_{i j} x_{i} x_{j} \quad \alpha_{i j} \in K
$$

f is said to represent zero if $\exists\left(a_{1}, \ldots, a_{n}\right) \in K^{n}$ such that $f\left(a_{1}, \ldots a_{n}\right)=0$.

Theorem: (Hasse-Minkowski) A quadratic form f represents 0 over \mathbb{Q} if and only if f represents 0 over \mathbb{R} and \mathbb{Q}_{p} for all primes p.

Remark: The Hasse-Minkowski Theorem is a local-global principle: if we want to know if a quadratic form represents 0 over \mathbb{Q} (a global property), we can check if it represents 0 over \mathbb{R} and \mathbb{Q}_{p} (local properties).

The proof of the Hasse-Minkowski Theorem is typically done by dividing all quadratic forms into five cases: $n=1,2,3,4$ and $n \geq 5$ where n is the number of variables in the quadratic form. In this paper, I will not prove the Hasse-Minkowski Theorem. However, I will present an example of how to use the theorem to solve problems which incorporates Hensel's Lemma and the Chevalley-Warning Theorem.

Ex: Consider the quadratic form $f(x, y, z)=5 x^{2}+7 y^{2}-13 z^{2}$. Suppose we want to know if the equation $f(x, y, z)=0$ has a non-trivial solution in \mathbb{Q}^{3}.
First, observe that $f(x, y, z)=0$ has the non-trivial solution $(1,0, \sqrt{5 / 13})$ in \mathbb{R}^{3}.
Next, let p be a prime, $p \neq 2,5,7,13$. Observe that the number of variables of $f(x, y, z)$ is $3(\bmod p)$ because $p \neq 5,7,13$, which means $\operatorname{deg} f<3(\bmod p)$. Furthermore, $f(x, y, z) \equiv 0(\bmod p)$ has at least one solution, i.e. the trivial solution $(0,0,0)$. By the Chevalley-Warning Theorem, there is also a non-trivial solution $\left(x_{0}, y_{0}, z_{0}\right)$ since the number of zeros must be $0(\bmod p)$.
Without loss of generality, assume x_{0} is the non-zero value in $\left(x_{0}, y_{0}, z_{0}\right)$. In other words, $x_{0} \not \equiv 0(\bmod p)$. If we let $g(x)=5 x^{2}+7 y_{0}^{2}-13 z_{0}^{2}$, then $g\left(x_{0}\right) \equiv 0(\bmod p)$. Furthermore, $g^{\prime}\left(x_{0}\right) \not \equiv 0(\bmod p)$ because $g^{\prime}\left(x_{0}\right)=10 x=2 \cdot 5 \cdot x_{0}$ and $p \nmid 2 \cdot 5 \cdot x_{0}$. By Hensel's Lemma, the solution $\left(x_{0}, y_{0}, z_{0}\right)$ lifts to a solution $\left(\tilde{x}, y_{0}, z_{0}\right)$ in \mathbb{Q}_{p}^{3} for all primes p.

In the cases that $p=2,5,7,13$, after a bit of guessing, one finds that $(1,0,1)$ is a non-trivial solution $(\bmod 2),(0,2,1)$ is a non-trivial solution $(\bmod 5),(2,0,1)$ is a non-trivial solution $(\bmod 7)$, and $(3,1,0)$ is a non-trivial solution $(\bmod 13)$.

Performing the same process as when $p \neq 2,5,7,13$, we can use Hensel's Lemma to lift these solutions to \mathbb{Q}_{p}^{3} for all primes p. We just need to define a single variable polynomial g for each solution and check that $g^{\prime} \neq 0$ at the point in question.
Since f represents 0 in \mathbb{R}^{3} and \mathbb{Q}_{p}^{3} for all primes p, by the Hasse-Minkowski Theorem, f represents 0 in \mathbb{Q}^{3}.

Remark: Unfortunately, the Hasse-Minkowski Theorem is not necessarily true for higher-degree polynomials. For example, in 1951, Ernst Selmer showed that the homogeneous degree-3 polynomial $f(x, y, z)=3 x^{3}+4 y^{3}+5 z^{3}$ represents zero in \mathbb{R} and \mathbb{Q}_{p} for all primes p but not in \mathbb{Q}. Determining why the Hasse-Minkowski Theorem fails for certain higher-degree polynomials is an area of active research.

5 References

Hatley, Jeffrey. Hasse-Minkowski and the Local-to-Global Principle. Undergraduate thesis, The College of New Jersey, 2009.

Preszler, Jason. Notes on p-Adic Numbers. University of Utah, 2005.

Selmer, Ernst. "The Diophantine Equation $a x^{3}+b x^{3}+c z^{3}=0 . "$ Acta Math, Vol. 85 (1951): 203-362.

Serre, Jean-Pierre. A Course in Arithmetic. New York: Springer, 1973.

