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1 Introduction

A local-global principle is when the local properties of a mathematical object tell
you something about the global properties of the object. Here are a few examples:

Ex: (Graph theory)

Theorem: (Euler, 1735) A connected graph has an Euler circuit if and only if
every vertex has even degree.

Recall that an Euler circuit is a path starting and ending at the same vertex which
traverses each edge of the graph exactly once. According to Euler’s Theorem, the
left-hand graph in the diagram below has an Euler circuit because every vertex has
degree 2, while the right-hand graph does not because the bottom two vertices have

degree 3.

Euler’s Theorem is an example of a local-global principle: the degrees of the vertices
of a connected graph (a local property) tell you whether or not the graph has an
Euler circuit (a global property).



Ex: (Differential geometry)

The Gauss-Bonnet Theorem relates the Gaussian curvature of a compact two-
dimensional Riemann manifold (a local property) to the Euler characteristic of the
manifold (a global property).

Ex: (Number theory)

Let f(z) = 2® — 3z + 17. Suppose we want to solve f(x) = 0 for z € Z (a global
question). One approach is to look at the problem over the finite field Z/57Z (a local
question). In Z/5Z, the function f(z) becomes f(z) = 2* 4+ 3z + 2. Furthermore,
we can check that the equation f(z) =0 (mod 5) has no solutions:

Now, we know the map

¢:7 — 7/57 x +— z (mod 5)

is a ring homomorphism. This means that if f(a) = 0 for some a € Z, then f(b) =0
(mod 5) where b = ¢(a) € Z/5Z. But there are no such solutions b in Z/5Z which
implies there are no solutions a in Z.

However, it is important to note that the converse is NOT true: a Diophantine
equation may have solutions in Z/nZ but not in Z. For example, consider the
function f(z,y) = 32? + 6zy + y. Suppose we want to find the non-trivial solutions
of f(x,y) =0 for (x,y) € Z*. One can check that (1,0) and (2, 0) are two non-trivial
solutions in (Z/3Z)* However, factoring f(x,y) over R, we get

f(ey) = (B+VB)z+y) (- Vo) +y)

In other words, f(x,y) is the product of two irrational lines, which means f(z,y) =0
has no non-trivial solutions in Q2 and thus none in Z2.

The Hasse-Minkowski Theorem is a local-global principle that tells us when a quadratic
equation such as the one above has rational solutions. In order to understand the
theorem, we need to introduce the concept of p-adic numbers.

2 p-adic Numbers

a a’ a
Let z = 7 € Q. Observe that we can write x = ap” where p is prime, m is in

lowest terms, p f a’b’, and n € Z. This leads us to the following definition:



Definition: The p-adic order of x € Q is

@) = {n z€Q\ {0}

oo =0

Informally stated, the p-adic order measures the degree n to which a prime p di-
vides a rational number z. If v,(z) > 0, then p divides a more than it divides b. If
vp(2) < 0, then p divides b more than it divides a.

Proposition: The p-adic order has the following properties: if z,y € Q, then
L yylay) = vp(x) + vp(y)

2. vp(r+y) >min{y,(v),v,(y)}
where the inequality in Property 2 is an equality if and only if v,(z) # v,(y).

/ /

Proof:  Let x = %p" and y = %pm as described at the beginning of the section.

Without loss of generality, assume n < m. Then

a'c’

v

2y pn+m —_— I/p(l'y) =n+m= I/p(l’> + l/p(y)

a/ /

vry= (G5 = wplety) 2 0= min{y (@), 5()

This proves Properties 1 and 2. In addition, suppose n is strictly less than m which
means that v,(x) # v,(y). Then v,(x +y) > min{v,(z),v,(y)} = v,(x). However,
vp(2) = vp(z +y —y) 2 min{y(z +y),vp(y)}. I min{y,(z +y), 1,(y)} = v,(y),
then v,(y) > v,(z) > v,(y) which is impossible. Thus, min{v,(x + y),,(y)} =
vp(x +y). So we have v,(x +y) > vy(z) and v,(x) > v,(z + y) which means that
vp(z +y) = vp(x) = min{y,(z),v,(y)}. This proves that the inequality in Property
2 is an equality if and only if v,(z) # v,(y). O

Having established the p-adic order and two of its properties, we are ready for
another definition:

Definition: The p-adic absolute value of x € Q is

], = p~® e Q\{0}
S ) z=0



Proposition: The p-adic absolute value has the following properties: if z,y € Q,
then

1. Jz[,=0 <= =0
2. |Iy|p = |x|p |y|p
3. |z + y‘p < max{]a:|p, |y‘p}

Proof: ~ Property 1 is true by the way |z|, is defined. Next, observe that

(@)+vp(y) )

[2ly [yl = pr@ p) — = = |zyl,

which proves Property 2. Finally, without loss of generality, let max{|z|,, |y|,} =
|z|,. This implies that

lz]p > [ylp = p_yp(x) > p_yp(y) = vp(r) < vp(y)

So  vy(x) =min{y,(x),,(y)} <vy(r+y). Thus,

v (@)+vp(y) )

max{[z,, [ylp} = |z}, = p~@ > p~ — e+l .

This proves Property 3. 0

These properties of the p-adic absolute value imply that the p-adic absolute value
is a metric (in fact, an ultrametric) on Q if we let d(z,y) = | — y|,. This leads us
to two final definitions:

Definition: A p-adic Cauchy sequence is a sequence {x,}> ;| in Q such that

Ve>0, AN eN: Vnm>N, |z,— Tyl <e€
Definition: The p-adic rational numbers Q, are defined as the completion of Q

with respect to the p-adic absolute value |- |,. That is, if C, is the set of p-adic
Cauchy sequences in QQ, then

Q, := { Jim o,

()2 € G, .

This analytic construction of @, is analogous to how we may define R to be the set
of limits of standard Cauchy sequences in Q.



3 Hensel’s Lemma, Chevalley-Warning Theorem

Lemma: (Hensel) Let p be a prime, f(z) € Zlx], and m,k € N where m < k. If
7 € Z such that f(r) =0 (mod p*) and f'(r) # 0 (mod p), then I s € Z such that
f(s) =0 (mod p**t™) where s = r (mod p*). Furthermore, s is unique (mod p*™™).

Proof: ~ Consider the Taylor expansion of f(z) about the point x = r:

fl@) = f(r)+ f/(r)(@x —r)+

This Taylor series is just the sum of N terms where N = deg(f), so we don’t have
to worry about convergence issues. Now, the fact that we have s = r (mod p*) in
Hensel’s Lemma suggests that s = r + p*t for some ¢t € Z. We need to prove that t
exists.

If we substitute s = r + p*¢ into the Taylor expansion above, we get

f(s)=flr+p"t) = f(r)+ f'(r)p"t + %(‘T)p%ﬁ + ...

= f(r) + f'(r)p*t (mod p*m).
In order for f(s) =0 (mod p*™™) to hold, it must be that

0= f(r)+ f'(r)pt (mod p*™).

Observe that f(r) = pa for some a € Z since f(r) = 0 (mod p*). This means
that

0= (a - tf’(r))pk (mod p**™) = a + tf'(r) (mod p™).

Since f'(r) # 0 (mod p), f'(r)~! exists (mod p™), which means we can solve for ¢
in the equation above. This proves that t exists. Furthermore, the uniqueness of a
and f'(r) guarantee the uniqueness of ¢ and thus s (mod p**+™). O

Theorem: (Chevalley-Warning) Let K be a field of characteristic p and let
J1s ey [ € K21, ...1,)) be polynomials in n variables such that the Y ;. _, deg(fx) < n.
If V is the set of common zeros of fi,..., fn in K", then Card V =0 (mod p).

Proof:  Jean-Pierre Serre, A Course in Arithmetic, pg. 5



4 The Hasse-Minkowski Theorem

We are now in a position to state the Hasse-Minkowski Theorem.

Definition: A quadratic form f over a field K is a homogeneous degree-2 polynomial
with coefficients in K:

f(Il,...,ZL‘n) = Z Qjj T T Qi € K

1<i j<n

f is said to represent zero if 3 (as,...,a,) € K™ such that f(ay,...a,,) = 0.

Theorem: (Hasse-Minkowski) A quadratic form f represents 0 over Q if and
only if f represents 0 over R and Q, for all primes p.

Remark: The Hasse-Minkowski Theorem is a local-global principle: if we want to
know if a quadratic form represents 0 over Q (a global property), we can check if it
represents 0 over R and @, (local properties).

The proof of the Hasse-Minkowski Theorem is typically done by dividing all quadratic
forms into five cases: n =1,2,3,4 and n > 5 where n is the number of variables in
the quadratic form. In this paper, I will not prove the Hasse-Minkowski Theorem.
However, I will present an example of how to use the theorem to solve problems
which incorporates Hensel’s Lemma and the Chevalley-Warning Theorem.

Ex: Consider the quadratic form f(z,y, z) = 52% + 7y? — 1322, Suppose we want
to know if the equation f(z,y,z) = 0 has a non-trivial solution in Q3.

First, observe that f(z,y, z) = 0 has the non-trivial solution (1,0, 1/5/13) in R3.

Next, let p be a prime, p # 2,5,7,13. Observe that the number of variables of
f(x,y, z) is 3 (mod p) because p # 5,7,13, which means degf < 3 (mod p). Fur-
thermore, f(z,y,2z) = 0 (mod p) has at least one solution, i.e. the trivial solution
(0,0,0). By the Chevalley-Warning Theorem, there is also a non-trivial solution
(20, Yo, 20) since the number of zeros must be 0 (mod p).

Without loss of generality, assume xg is the non-zero value in (zg, yo, z0). In other
words, zg # 0 (mod p). If we let g(z) = 5z + Tyg — 1322, then g(zo) = 0 (mod p).
Furthermore, ¢'(z¢) # 0 (mod p) because ¢'(xg) = 10z =2-5-zgand p f2-5- .
By Hensel’s Lemma, the solution (xg, yo, 29) lifts to a solution (Z,yo, z0) in (@f; for
all primes p.

In the cases that p = 2,5,7,13, after a bit of guessing, one finds that (1,0,1) is a
non-trivial solution (mod 2), (0,2,1) is a non-trivial solution (mod 5), (2,0,1) is a
non-trivial solution (mod 7), and (3, 1,0) is a non-trivial solution (mod 13).



Performing the same process as when p # 2,5,7,13, we can use Hensel’s Lemma to
lift these solutions to Q}% for all primes p. We just need to define a single variable
polynomial g for each solution and check that ¢’ # 0 at the point in question.

Since f represents 0 in R? and @g for all primes p, by the Hasse-Minkowski Theorem,
f represents 0 in Q3.

Remark: Unfortunately, the Hasse-Minkowski Theorem is not necessarily true for
higher-degree polynomials. For example, in 1951, Ernst Selmer showed that the
homogeneous degree-3 polynomial f(z,y,2) = 323 + 4y> + 52° represents zero in
R and Q) for all primes p but not in Q. Determining why the Hasse-Minkowski The-
orem fails for certain higher-degree polynomials is an area of active research.
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