
Several Algorithms Using Elliptic Curves

Chris Phillips

December 2018

1 Introduction

This paper will outline the steps and provide justification for two algorithms related to elliptic
curves, namely Lenstra’s Factorization Algorithm and Schoof’s Algorithm for counting the
number of points on an elliptic curve over a finite field Fp.

2 Lenstra’s Factorization Algorithm

Lenstra’s Algorithm is essentially an improvement on Pollard’s p − 1 Algorithm. We will
begin with a discussion of Pollard’s Algorithm to motivate the use of elliptic curves.

2.1 Pollard’s p− 1 Algorithm

First remember Fermat’s Little Theorem: If p is a prime integer and a is any integer not
divisible by p we have

ap−1 ≡ 1(mod p).

Let n be the composite integer we want to factor and suppose n has a prime factor p
such that p− 1 is a product of small primes. Fermat’s Little Theorem implies that p divides
gcd(ap−1 − 1, n). This is the crucial observation for the algorithm.

Without knowing p computing ap−1−1 is impossible so make a reasonable guess. Choose
k = 2e2 ·3e3 · ... · rer where {2, 3, ..., r} is the list of the first primes up to an arbitrarily chosen
prime r and {e2, e3, ..., er} are relatively small integers.

Using the fast powering algorithm compute gcd(ak − 1, n). If p− 1|k then p|ak − 1, thus
g = gcd(ak − 1, n) ≥ p > 1. If g 6= n then we have succeeded in finding a non-trivial factor
of n. Otherwise a new a is chosen and we loop back through.

1

2.1.1 Pollard’s Algorithm: Outline of Steps

Given n ≥ 2 a composite integer to be factored.

1. Set a = 2.

2. Set k = 2 kmax = pre-specified upper bound. While k ≤ kmax loop:

(a) Set a = ak (mod n).

(b) Compute g = gcd(a− 1, n).

(c) If n > g > 1, return g.

(d) If g = n, Increment a, go to 2.

3. Increment k, go to 2.

This is a reformatting of the outline found in [Jos15].

2.2 Lenstra’s Algorithm

Notice that in order for Pollard’s Algorithm to work without taking an extremely large
amount of computations we need a prime factor of n such that p − 1 is a product of small
primes. We get this value p− 1 because it is the order of (Z/pZ)∗, the multiplicative group
of integers mod p. This is a fairly large supposition when working with a random composite
number. Lenstra’s Algorithm replaces the group (Z/pZ)∗ with the group of points on an
elliptic curve over a finite field to side-step this problem.

Choose an elliptic curve E and a point P ∈ E(Fp). If the number of points on E over
Fp, #E(Fp), happens to divide an integer k we know that kP = O where O is the identity
in the group E(Fp). This will lead to a means of finding p.

At first glance the advantage of working in this setting might not be apparent, but
working over Z/pZ we are stuck with the order p− 1 for our group. Working with the group
of points on a curve over Fp we can change the curve. The number of points changes for a
fixed p as we vary the curve so the odds of the algorithm succeeding increase.

2.2.1 Description of Lenstra’s Algorithm

To factor a given composite integer n pick a pair (x1, y1) and b with x1, y1, b all integers
modulo n then find c such that

c ≡ y21 − x31 − bx1
then set E : y2 = x3 + bx+ c. In this way we have chosen a curve, E, and point, P , to start
with. By choosing the pair (x1, y1) before fixing a curve we have guaranteed that E has a
point to work with, and we do not need to use any resources to compute said point.

Now we must compute kP for a given k. To do this we use a binary expansion trick
similar to the fast powering algorithm. Start by writing

k = k0 + 2k1 + 22k2 + 23k3 + ...+ 2nkn,

2

with ki = 0 or 1. Then calculate

P0 = P

P1 = 2P0 = 2P

P2 = 2P1 = 4P

...

Pn = 2Pn−1 = 2nP

Then kP = the sum of all Pi where ki 6= 0. This will take at most 2 log2 k steps of doubling
and reduction modulo n[Jos15].

Because n is not prime we run into some difficulty with the usual addition and doubling
formulas. Recall, to add points Q1 = (x1, y1), Q2 = (x2, y2) such that Q1+Q2 = Q3 = (x3, y3)
we use the formulas

x3 = λ2 − x1 − x2, y3 = −λx3 − (y1 − λx1)

λ =
y2 − y1
x2 − x1

.

Thus we can only add points if (x2−x1) is invertible modulo n. Which is not guaranteed
because Z/nZ is not a field. We run into a similar problem with the usual formulas for
doubling where

λ =
2x2 + 2ax+ b

2y
.

In either case we consider what happens when trying to invert the denominator.
Let a = 2y or a = (x2 − x1) be the element in Z/nZ we are trying to invert. There are

three possible outcomes:

1. gcd(a, n) = 1, then a is invertible modulo n. We can proceed adding or doubling.

2. gcd(a, n) = g where 1 < g < n, we cannot add or double the points as a is not invertible
modulo n, but we have succeeded in our original goal of finding a non-trivial factor of
n. Rejoice!

3. gcd(a, n) = n we cannot proceed with point addition or doubling, and we have not
found a non-trivial factor. Pick a new curve and repeat the process.

3

2.2.2 Lenstra’s Algorithm: Outline of Steps

Given a composite integer n to factor. First check that gcd(6, n) = 1 and that n is not a
perfect power to rule out factors that would be easier to find.

1. Choose random b, x1, y1 ∈ Z/nZ.

2. Set P = (x1, y1), c ≡ y21 − x31 − bx1 (mod n).

3. Set E : y2 = x3 + bx+ c.

4. Set d = 2, dmax = pre-determined upper bound. While d ≤ dmax loop:

(a) Compute Q = dP .

(b) If (a) fails we have found g > 1 such that g|n.

(c) If g < n, return g.

(d) Else, g = n, go to 1. Choose new curve and point.

5. Increment d, go to 4.

This is a reformatting of the outline found in [Jos15]

2.2.3 Why Should This Algorithm Work?

If p, q are two primes that divide n, the number we want to factor, and we let E : y2 =
x3 + ax+ b be an elliptic curve then we have that y2 = x3 + ax+ b mod n implies the same
equation holds mod p and mod q. Because p and q are prime we know that the points on the
curve over the finite fields Fp and Fq form groups with our usual methods for addition. These
groups have order Np and Nq respectively where Np is #E(Fp) and Nq is #E(Fq). Thus if
kP = Op then k|Np where P ∈ E(Fp). Similarly, if kP = Oq then k|Nq where P ∈ E(Fq).
Here Oi is the point at infinity over Fi.

Hasse’s Theorem: For E(Fq), an elliptic curve over a finite field Fq, the number of
points on E(Fq) #E(Fq) = q + 1− ε where |ε| ≤ 2

√
q.

Hasse’s Theorem tells us that #E(Fp) is relatively close to p + 1 and similarly #E(Fq)
is close to q + 1. Thus, it is likely that we can find a k such that kP = Op that kP 6= Oq.
When we find k kP will not be a point on the original curve with points mod n.

3 Schoof’s Algorithm

Schoof’s Algorithm is a polynomial time algorithm for counting the number of points on
an elliptic curve over a finite field, Fq. The algorithm finds the error term from Hasse’s
Theorem by solving for it modulo a set of small primes then using the Chinese Remainder
Theorem to find the desired result. Schoof’s Algorithm by itself is not efficient enough to be
used for large q, but Elkies and Atkins have improved the algorithm to a version known as
S.E.A.(Schoof, Elkies, Atkins).

4

3.1 The Algorithm

Hasse’s Theorem: For E(Fq), an elliptic curve over a finite field Fq, the number of points
on E(Fq) = #E(Fq) = q + 1− ε where |ε| ≤ 2

√
q.

We can restate Hasse’s Theorem to say

|q + 1−#E(Fq)| ≤ 2
√
q.

Let t = q+1−#E(Fq) with the above inequality it is sufficient to find t modulo N where
N > 4

√
q. Then #E(Fq) = q + 1− t.

Solving for t mod N directly will be inefficient if N is relatively large. The idea comes
from building a set S = {l1, ..., ln} of small primes such that Πn

i=1li = N and solving for t
mod li for all li ∈ S. Then we can use the Chinese Remainder Theorem to solve for t mod
N .

3.1.1 Division Polynomials

Let E : y2 = x3 + ax+ b be a Weierstrass curve.
Here we introduce the division polynomial, Ψn(x, y) ∈ Fq[x, y] for n ∈ Z, n ≥ 1.

Ψ1(x, y) = 1

Ψ2(x, y) = 2y

Ψ3(x, y) = 3x4 + 6ax2 + 12bx− a2

Ψ4(x, y) = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3)...
Ψ2n(x, y) = Ψn(Ψn+2Ψ

2
n−1)−Ψn−2Ψ

2
n+1)/2y

Ψ2n+1(x, y) = Ψn+1Ψ
3
n −Ψ3

n+1Ψn−1

For n ≥ 0 Ψn(x, y) = 0 precisely when (x, y) is in the group of n-torsion points on E.
From these we can get an explicit formula for nP where n ∈ Z, P = (x, y) ∈ E(Fq), such

that nP 6= O

nP = (x− Ψn−1Ψn+1

Ψ2
n

,
Ψn+2Ψ

2
n−1 −Ψn−2Ψ

2
n+1

4yΨ3
n

) (1)

For later purposes we will eliminate y2 terms using y2 = x3 + ax + b and call the new
polynomial Ψ′n. Then Ψ′n is either in Fq[x] or yF[x]. Define

fn(x) =

{
Ψ′n(x, y)if n is odd

Ψ′n(x, y)/y if n is even

Note that the degree of fn is

deg(fn) =

{
1
2
(n2 − 1) if n is odd

1
2
(n2 − 4) if n is even

[Sch85]

5

3.1.2 The Frobenius Endomorphism

Let t = q + 1−#E(Fq) and

φ : E(Fq)→ E(Fq), (x, y) 7→ (xq, yq)

the qth power Frobenius map.
The important takeaway from the Frobenius map is that it satisfies

φ2 − tφ+ q = 0 ∈ End(E)

where End(E) is the ring of endomorphisms of E[Sil09].

3.1.3 Solving for t mod l

In order to guarantee the existence of l-torsion points we must work over a finite field
extension of Fq. Call this extension Fq.

Let l be an odd prime not equal to 2, and P = (x, y) ∈ E(Fq)[l] an- l-torsion point on E.
Then

φ2(P)− tφ(P) + qP = O

(xq
2

, yq
2

)− t(xq, yq) + q(x, y) = O

Because P is an l-torsion point we can reduce t, q mod l such that t′ ≡ t mod l and q′ ≡ q
mod l. Then we have

(xq
2

, yq
2

)− t′(xq, yq) + q′(x, y) = O.

Now we have reduced the problem to finding a point in E(Fq)[l] which satisfies

t′(xq, yq) = (xq
2

, yq
2

) + q′(x, y).

These l-torsion points are defined in potentially large extension fields of Fq so, to avoid
growing complexity, in this process we will work with the division polynomial fl(x). Recall,
that the coordinates of l-torsion points are roots of this polynomial, and that it has degree
1
2
(l2 − 1). Perform all computations from now on in the quotient ring

Rl =
Fq[x, y]

fl(x), y2 − x3 − ax− b

Any time there is a non-linear term for y replace it with y2 = x3 + ax + b and any time
there is a power xd with d ≥ 1

2
(l2 − 1) divide by fl(x) and take the remainder. This reduces

the maximal degree we are working with to 1
2
(l2 − 1)− 1 = 1

2
(l2 − 3).

In this way computing t′ for enough primes l we can find t via the Chinese Remainder
Theorem.

6

3.1.4 Outline of Steps

Given E : y2 = x3 + ax+ b, Fq a finite field for which the number of points is desired.

1. Set A = 1, l = 3, q′ = q mod l.

2. While A ≤ 4
√
q.

(a) For n = 0, 1, ..., l − 1

i. Working in Rl, if (xq
2
, yq

2
) + q′(x, y) = n(xq, yq) break n-loop.

(b) Set tl = n, A = A · l, l = next largest prime.

3. Use Chinese Remainder theorem to find t using t3, t5, ..., tr where r is that prime nec-
essary such that 3 · 5 · ... · r ≥ 4

√
q.

4. Return #E(Fq) = q + 1− t.
This is a reformatting of the outline found in [Sil09]

3.1.5 Proof of Complexity

Theorem: Let E(Fq) be an elliptic curve over a finite field Fq. Schoof’s Algorithm is a
polynomial time algorithm to compute #E(Fq); In fact, it computes #E(Fq) in O((log q)8)
steps.

We first prove three lemmas.
Lemma 1: The largest prime l used is O(log q)

Proof. The prime number theorem states: If π(x) is the number of primes less than or equal
to x, then

lim
x→∞

π(x)
log x

x
= 1

This is equivalent to the statement

lim
x→∞

1

x

∑
l≤x,l prime

log l = 1

Then ∏
l<x

l ≈ ex

Thus, in order to make the product > 4
√
q it is sufficient to take x such that

ex > 4
√
q

(ex)2 = e2x > 16q

2x > log(16q)

x >
1

2
log(16q)

Thus it is sufficient to choose x such that x ≈ 1
2

log(16q).

7

Lemma 2: Multiplication in the ring Rl can be done in O(l4(log q)2) bit operations.

Proof. Elements in Rl are of degree O(l2). Multiplication of two such elements followed by
reducing mod fl(x) takes O(l4) operations of addition and multiplication in Fq. Multipli-
cation in Fq takes O((log q)2) bit operations. Thus, operations in Rl take O(l4(log q)2) bit
operations.

Lemma 3: It takes O(log q) operations in Rl to reduce xq, yq, xq
2
, yq

2
in the ring Rl.

Proof. Using the square and multiply algorithm described 2.2.1 we can compute (xn, yn)
with O(log n) operations. Note that these values are only computed once and used through-
out the algorithm.

Proof. (Theorem) From Lemma 1 we know that the primes l used are less than O(log q)
and that there are O(log q

log log q
) such ls used. Then the algorithm only loops through step 2.,

from the outline, that many times. The inner loop, (a), is run through at most l times,
in other words less than O(log q) times. Lemma 2 tells us that multiplication in Rl takes
O(l4(log q)2) = O((log q)6) operations. Solving for t′(xq, yq) in (a) takes O(1) operations
using the previous value.

With all of this we get a total number of operations:

O(log q) ·O(log q) ·O((log q)6) = O((log q)8).

References

[Sch85] Rene Schoof. “Elliptic Curves Over Finite Fields and the Computing of Square
Roots mod p”. In: Mathematics of Computation 44.170 (1985), pp. 483–494.

[Sil09] Joseph H. Silverman. The Arithmetic of Elliptic Curves. Springer, 2009. isbn:
9780387094939.

[Jos15] John T. Tate Joseph H. Silverman. Rational Points on Elliptic Curves. Undergrad-
uate Texts in Mathematics. Springer, 2015. isbn: 9783319185873.

8

