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1 Introduction

The p-adic numbers, denoted Qp is a complete �eld that can be constructed from the rationals similarly to the
construction of the reals using Cauchy sequences. In fact, the construction of the p-adics is a generalization
of the construction of the reals. The p-adics are also an important example of a non-Archimedean �eld.
Thus, many of the demonstrated properties of the p-adics can be applied to any non-Archimedian �eld.

This paper will show the completion of the rationals to the p-adics using the method of Cauchy sequences.
The non-archimedean property of the p-adic numbers will then be used to prove the Skolem-Mahler-Lech
theorem.

2 The Field of p-Adic Numbers

2.1 Construction of the Reals from the Rationals

The most familiar and intuitive �eld completion is that of the reals from the rationals. This process will be
used �rst as an example as the algebraic completion of �elds, and then it will be clear how the construction
of the p-adics is the same process with the only di�erence being a change in the absolute value function.

The construction of the reals from the rationals is done in four basic steps. First, the ordinary absolute
value function is taken over the rationals. Then a metric called the distance function is obtained on the
rationals. Next, Cauchy sequences are taken in the rationals with respect to the metric. Finally, the reals
are created by completing the Cauchy sequences over the rationals with respect to the ordinary absolute
value metric.

To construct the p-adic numbers instead of the reals, the only di�erence in this method will be a change
in the absolute value function. But �rst, let's understand in more detail the completion of the reals.

2.1.1 Absolute Value function

First, an absolute value function is taken on Q de�ned as

| · | : Q→ Q+.

For the construction of the reals, the ordinary absolute value is used, de�ned speci�cally as

|x| =

{
x : x ≥ 0

−x : x < 0

It will eventually be shown that this map really goes from the rationals to the reals. Since the reals have
not been de�ned yet, Q+ is used in their place. Recall that the ordinary absolute value function satis�es the
following conditions for all x and y in Q:

1. |x| = 0 if and only if x = 0.

2. |xy| = |x||y|
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3. |x+ y| ≤ |x|+ |y|

2.1.2 Metric

Next, a metric is induced by the absolute value function. The metric is called ′d′ because it is a distance
function. The ordinary absolute value combined with the rationals form a metric space. Q is the metric
space, and the ordinary absolute value is the distance function.

This metric space is written as (Q, | · |) and de�ned as

d : Q×Q→ Q+

d(x, y) = |x− y|

This is the same as the familiar de�nition of the distance between two points x and y as the absolute
value of their distance. All metrics on Q satisfy the following conditions for all x and y in Q:

1. d(x, y) ≥ 0

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z) (The triangle inequality).

2.1.3 Cauchy sequences

De�nition 1. A sequence of elements xn ∈ Q is a Cauchy sequence if for every real ε > 0, there is a positive
integer bound M so that for all integers m, n ≥M,

d(xm, xn) = |xm − xn| < ε.

Thus, a Cauchy sequence is a sequence whose terms are crowded into smaller and smaller balls.

Note 1. The following condition is not equivalent to the Cauchy condition with the ordinary absolute value:

lim
x→∞

|xn+1 − xn| = 0.

That is, a sequence whose terms get closer and closer together is not necessarily Cauchy under the
ordinary absolute value function.

Here is a counterexample:

{
m∑
n=1

1

n
: m = 1, 2, 3, . . .}

In this sequence, the terms get closer together, but the sequence diverges, so it is not Cauchy.

De�nition 2. A �eld is complete with respect to the absolute value function if every Cauchy sequence has
a limit in the �eld.

It is easy to see that Q is not complete with respect to the ordinary absolute value metric. The sequence
toward π, for instance, has no limit in Q.

2



2.1.4 Complete Q.

To complete Q, all of the missing limits of Cauchy sequences must be added in. There are several ways to do
this, but the most intuitive is probably the use of quotient groups. This is the method that will be described
here.

To �ll in the missing limits, replace the missing limit with the sequence itself. De�ne S as the set of all
Cauchy sequences of rational numbers.

De�nition 3. Two Cauchy sequences s1 = {aj} ∈ S and s2 = {bj} ∈ S are equivalent, s1 ∼ s2 if |aj−bj | → 0
as j →∞.

That is, two Cauchy sequences are equivalent if they converge to the same limit.

De�nition 4. R is the set of equivalence classes of the Cauchy sequences of rational numbers.

This is a formal analytic completion of Q to R, and the completion of Q to Qp will be completed in the
same manner, with more explanation of how a set of equivalences forms a complete �eld.

2.2 Construction of the p-adics from the rationals

As noted above, the creation of the p-adic numbers will be analogous to the above process, with a change
in the absolute value function. The p-adic absolute value is de�ned for each �xed prime p. Note that all
rational numbers can be written as x = pv ab where p, a, and b are all coprime.

2.2.1 Absolute value function

De�nition 5. The p-adic absolute value of x ∈ Q is de�ned as,

| · |p : Q→ Q+

|x|p = |pv
a

b
|p = p−v.

By convention, |0|p = 0. The p-adic absolute value satis�es the normal three conditions of an absolute value
from before, but its third condition is stronger, making it a non-archimedian absolute value.

De�nition 6. An absolute value function is non-archimedian if it satis�es the following condition:

|x+ y| ≤ max{|x|, |y|}

Lemma 1. For a non-archimedian absolute value, if |x| 6= |y|, then |x+ y| = max{|x|, |y|}.

Proof. Without loss of generality, assume |x| > |y|. Then

|x| = |(x+ y)− y| = max{|(x+ y)|, |y|} = |x+ y| .

2.2.2 Metric

The metric induced by a non-archimedian absolute value has the same conditions as the ordinary abso-
lute value function, but the triangle inequality is stronger. A non-archimedian absolute value induces an
ultrametric space.

De�nition 7. An ultrametric space is the metric spaced induced by a non-archimedian absolute value. It
meets the three absolute value conditions, but its triangle inequality is stronger and states,

d(x, z) ≤ max{d(x, y) + d(y, z)}.
3



Lemma 2. In an ultrametric space, all �triangles� are isosceles.

Proof. Say x, y, and z are vertices of a triangle. If |x − y| = |y − z|, the lemma is proved. If not,
|x− z| = max{|x− y|, |y − z|} by the third condition of a non-archimedian absolute value.

De�nition 8. The p-adic metric space (Q, | · |p) is de�ned as

d : Q×Q→ Q+

d(x, y) = |x− y|p.

As an aside, we may still think of this metric as the distance function, which reveals an interesting
meaning of distance. For example, when p = 3, the number 2 is closer to 92 than it is to 3. Explicitly,

|92− 2|3 = |90|3 = |32 × 10|3 = 3−2 = 1/9

|3− 2|3 = |1|3 = |30|3 = 3−0 = 1

Thus, 2 is 9 times closer to 92 than to 3 using the p-adic absolute value.

2.2.3 Cauchy sequences

Lemma 3. A sequence (xn) of rational numbers is a Cauchy sequence with respect to a non-archimedian
absolute value if and only if

lim
x→∞

|xn+1 − xn| = 0.

Proof. Recall that an absolute value is non-archimedian if and only if |x+ y| ≤ max{|x|, |y|}.
Then for n+ r > n,

|xn+r − xn| = |xn+r − xn+r−1 + xn+r−1 − xn+r−2 + xn+r−2 + · · ·+ xn+1 − xn|

|xn+r − xn| ≤ max{|xn+r − xn+r−1|, |xn+r−1 − xn+r−2|, . . . , |xn+1 − xn|}

Without loss of generality, choose a maximum distance between elements.
Then, limn→∞ |xn+r − xn| ≤ limn→∞ |xn+1 − xn|, which is possible only if limn→∞ |xn+1 − xn| = 0.

Note that this condition was previously noted to not be equivalent to the Cauchy condition for the
ordinary absolute value. It is also easy to see that Q is still not complete with respect to the p-adic absolute
value function.

2.2.4 Complete Q

De�nition 9. The set of all Cauchy sequences of elements of Q is de�ned as

Cp(Q) = {(xn) : (xn) is a cauchy sequence with respect to ||p} .

Proposition 1. C is a commutative ring with unity with addition and multiplication de�ned as

(xn) + (yn) = (xn + yn)

(xn) · (yn) = (xnyn)
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Note that C is not a �eld because (xn) · (yn) = (0) for xn, yn 6= 0. Still, C is technically a formal analytic
completion of Q because all sequences in C converge to an element of C .

As with the construction of the reals, the p-adics will be constructed by �modding out� equivalent se-
quences.

First, check that Q is at least included in C , which is required for C to be a completion of Q.

Lemma 4. Q ⊂ C

Proof. For x ∈ Q, x, x, x, . . . = (x), which gives the following inclusion of Q into C .

Q ↪→ C

x 7→ (x)

Next, equivalence classes must be constructed. These will become the elements of the �nal goal, which
is Qp. Recall that Cauchy sequences are equivalent if their di�erence tends to zero. That is, their di�erence
is a sequence whose �nal elements are a trail of zeros. Equivalently, their di�erence must be in the ideal N .

De�nition 10. The ideal, N , of C is the set of sequences tending toward 0.

N ⊂ C

N = {(xn) : xn → 0} = {(xn) : lim
n→∞

|xn|p = 0}.

This leads to the �nal construction of the p-adic numbers.

De�nition 11. The �eld of p-adic numbers is de�ned as, Qp = C /N .

This de�nition states that elements of Qp are equivalence classes of Cauchy sequences with respect to
the p-adic absolute value. Now check that Q is still included in Qp.

Lemma 5. Q ⊂ Qp.

Proof. The di�erence of constant sequences is another constant sequence, so they will never di�er by an
element of N and are therefore distinct elements of Qp.

Given then that N is an ideal of C , it can be shown that it is also the maximal ideal, which implies that
N is a �eld.

Lemma 6. The ideal N is a maximal ideal of C , and therefore a �eld.

Proof. Let (xn) ∈ C \N and let I be the ideal generated by (xn) and N . It must be shown that I = C ,
which is equivalent to showing that the unit element (1) = 1 + 1 + ... ∈ I. Since (xn) 9 0, |xn|p ≥ c > 0 for
all n ≥ N.

De�ne (yn) =

{
0 n < N
1
xn

n ≥ N
(yn) ∈ C because for n ≥ N,

|yn+1 − yn| = |
1

xn+1
− 1

xn
| = |xn+1 − xn|

|xnxn+1|

And by the non-archimedean property, |xn+1−xn|
|xnxn+1| ≤

|xn+1−xn|
c2 → 0.

Notice that

xnyn =

{
0 n < N

1 n ≥ N
.

Thus, (xn)(yn) is a series of N − 1 zeros followed by ones.
Then (1)−(xn)(yn) is a series of N−1 ones followed by zeros. It follows that (1) = (xn)(yn)+(n ∈ N ) ∈ I.

Therefore, I = C .
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Next, it must be veri�ed that C is complete, that is, all Cauchy sequences converge to their limit. This
veri�ed by showing that all sequences eventually become stationary.

Lemma 7. Let (xn) ∈ C \N . Then there exists an integer N such that |xn|p = |xm|p for all m,n ≥ N.

Proof. As shown in the previous proof, since (xn) 9 0, it follows that |xn| ≥ c > 0 for all n ≥ N1. Also,
|xn − xm|p < c for all n,m ≥ N2. Then combining these two equations, set N = max{N1, N2}.Then,

|xn − xm|p < max{|xn|p, |xm|p} for all m,n ≥ N.

Then by non-archimedian �isosceles triangle� property, it follows that |xn|p = |xm|p.

Then the p-adic numbers are de�ned as the limits of the Cauchy sequences that represent them.

De�nition 12. If λ ∈ Qp and (xn) is any Cauchy sequence representing λ,

|λ|p = lim
n→∞

|xn|p.

From this de�nition, it can be shown that Qp is complete by a similar process that veri�ed that C is
complete. The completeness of Qp implies that every Cauchy sequence in Qp converges to an element of
Qp. The calculations are somewhat tedious because it must be remembered that elements of Qp are de�ned
as Cauchy sequences of elements of Q. Thus, to prove completion, it must be veri�ed that every Cauchy
sequence of Cauchy sequences of Q converges, which they do.

The following theorem gives a summary of what has been shown so far:

Theorem 1. For every prime p ∈ Z, there exists a �eld Qpwith a non-archimedian absolute value ||p such
that

i.) There exists an inclusion Q ↪→ Qp, and the absolute value induced by ||p on Q via this inclusion is
the p-adic absolute value.

ii.) Q is complete with respect to ||p.

The next theorem is noteworthy because it illuminates the signi�cance of the �eld of p-adic numbers.

Theorem 2. (Ostrowski's Theorem). Every non-trivial absolute value on Q is equivalent to one of the
absolute values ||p, where p is a prime or p =∞.

Proof. A thorough proof can be found in Gouvea, 43.

This theorem reveals that the real completion of Q ↪→ R and the p-adic completion of Q ↪→ Qp are the
only possible Cauchy completions of Q. Note that the ordinary absolute value is de�ned as ||p, where p =∞.
Thus, the p-adic completion of the rationals is really its only possible Cauchy completion.

3 The Skolem-Mahler-Lech Theorem

This section gives an example of a concrete theorem that can be proved using p-adic numbers. The p-adic
version of this proof is due to Georges Hansal in 1985, and is signi�cantly shorter than the original proof
over Q created by Thoralf Skolem in 1933.

3.1 Linear Recurrence

De�nition 13. A sequence of complex numbers (u)n = u0, u1, ... is a linear recurrence of order m if there
exist complex α1, α2, ..., αm where α0, αm 6= 0 such that for all n,

α0un + a1un+1 + · · ·+ αmun+m = 0 .

De�nition 14. An integer linear recurrence is a linear recurrence where all of the un's and α
′
is are integers.

A familiar example of an integer linear recurrence is the Fibonnaci sequence.
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De�nition 15. The zero set of a linear recurrence sequence is the set,

{n ∈ Z|un = 0}

Then the zero set tells when the linear recurrence takes on the value of zero. Note that the period of
the zero set may be zero, speci�cally when the zero set is the empty set, as is the case for the Fibonnaci
sequence. The Skolem-Mahler-Lech theorem will then show that the zero set is eventually periodic.

Example 1. Consider the integer linear recurrence un = un−1 + 2un−2 + 3un−3 with u0 = u1 = u2 = 1. It
is clear that un is never zero, since it is always positive. So the zero set is the empty set.

Example 2. Now consider un = −2un−1 + un−2 with u0 = 2, u1 = 1. Here, the zero set is only {3}, which
can be seen by considering the general formula for this sequence,

un = (1− 3

2
√
2
)(−1−

√
2)n +

1

4
(4 + 3

√
2)(
√
2− 1)n

and noting that the left term dominates for large n.

Example 3. Finally consider un = un−2 with u0 = 0, u1 = 1. Then un is zero when n is even. Thus, the
zero set is 2Z. Note also that it is possible to have a zero set equal to a+NZ. for a ∈ Z, N ∈ N.

The Skolem-Mahler-Lech theorem says that these three types of zero sets are the only ones that can occur.
It is impossible to have a zero set of the primes, the squares, or some other non-periodic set. Speci�cally:

Theorem. (Skolem-Mahler-Lech 1). Let (un) be a linear recurrence. Then there exists N ∈ Z≥1, a possibly
empty set S ⊆ {0, 1, ..., N − 1}, and a �nite set T ⊂ Z such that

un = 0 if and only if n ∈ T ∪ (S +NZ) .

To prove this theorem, there remain several necessary characteristics of linear recurrences.

Remark 1. If (un) and (vn) are linear recurrences, then (unvn) and (un + vn) are, too. And if A is the
solution of (un) and B of (vn), then A ∪B is the solution of (unvn) .

Remark 2. The sequence (un) is a linear recurrence if and only if un =
∑

1≤i≤s pi(n)λ
n
i for some λi ∈ C and

polynomials pi ∈ C[X].

Lemma 8. Take any linear recurrence characterized by the formula

U := {(un)|α0un + a1un+1 + · · ·+ αmun+m = 0}

for �xed α0, ..., αm ∈ C. Then there is a basis of U in terms of λ where λ is the root of the polynomial

g(T ) = αmT
m + · · ·+ α1T + α0.

Proof. First note that U is a C-vector space of dimensionm, since each sequence is determined by u0, ..., um−1.
Thus, it will have a basis.

Then if λ is a root of g(T ), it follows that (λn) ∈ U since

αmλ
n+m + αm−1λ

n+m−1 + · · ·+ α0 = λng(λ) = 0.

Case 1. The m roots λ1, ..., λm of g(T ) are distinct. Then {(λni )}1≤i≤m will form a basis of U .

Case 2. λ is a multiple root of g(T ). That is, g(λ) = g′(λ) = 0. Then the polynomial Tng(T ) will also
have λ as a multiple root, giving (Tng(T ))′T=λ = 0.

αm(n+m)λn+m−1 + αm−1(n+m− 1)λn+m−2 + · · ·+ α0nλ
n−1 = 0 .

Thus, (nλn−1) ∈ U and (nλn) ∈ U . Take for instance, λis a root of order at least 3. Then
(n2λn) ∈ U . In general, if λ is a root of order µ, then

(nkλn) ∈ U for k = 0, 1, ..., µ− 1.

Therefore, when g(T ) has roots λ1, ..., λs of order µ1, ..., µs with
∑s
µ=1 µi = m, the basis of U is

(nkλni )
1≤i≤s
0≤k≤µi−1 .
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This then gives a more convenient form of linear recurrences for proving the main theorem.

Corollary 1. Let (un) be a linear recurrence of order m. Then there exist λ1, ..., λs and polynomials
p1(T ), ..., ps(T ) with

∑
1≤i≤s(deg pi + 1) ≤ m such that

un = p1(n)λ
n
1 + · · ·+ ps(n)λ

n
s .

This then gives an equivalent form of the main theorem.

Theorem. (Skolem-Mahler-Lech 2). Let p1(T ), ..., ps(T ) ∈ C[T ] be some polynomials and λ1, ..., λs ∈ C× be
pairwise disjoint. Then there exists N ∈ N, a possibly empty set S ⊂ {0, 1, ..., N − 1}, and a �nite set T ⊂ Z
such that

p1(n)λ
n
1 + · · ·+ ps(n)λ

n
s = 0 if and only if n ∈ T ∪ (S +NZ) .

There remains one main theorem that will be used to prove Skolem-Mahler-Lech.

3.2 Strassmann's Theorem

Theorem 3. (Strassmann). Let

f(X) =

∞∑
n=0

anX
n = a0 + a1X + a2X

2 + · · ·

be a non-zero power series with coe�cients in Qp, and suppose that limn→∞ an = 0 so that f(x) converges
for all x ∈ Zp. Let N be the integer de�ned by the two conditions

|aN | = max
n
|an| and |an| < |aN | for n > N.

Then the function f : Zp → Qp de�ned by x 7→ f(x) has at most N zeros.

Proof. Consider the two cases.

Case 1. N = 0. Then |a0| > |an| for all n ≥ 1. Assume that some f(x) = 0. Then,

0 = f(x) = a0 + a1x+ a2x
2 + · · ·

So it follows that
|a0| = |a1x+ a2x

2 + · · · | ≤ max
n≥1
|anxn| ≤ max

n≥1
|an| ,

which contradicts the assumption that |a0| > |an| for all n ≥ 1. Therefore, f(x) 6= 0 for all x ∈ Zp.
That is, there are no zeros when N = 0.

Case 2. N 6= 0. Assume f(α) = 0 for some α ∈ Zp. Taking x ∈ Zp gives,

f(x) = f(x) = f(α) =
∑
n≥1

an(x
n − an)

= (x− α)
∑
n≥1

∑
j<n

anx
jan−1−j .

Note that this series can be re-ordered to an equivalent power series in x:

f(x) = (x− α)
∞∑
n=0

bjx
j where bj =

∑
k≥0

aj+1+kα
k .

Then,
|bj | ≤ max

k≥0
|aj+1+k| ≤ |aN |
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and
|bN−1| = |aN + aN+1α+ aN+2α

2 + · · · | = |aN | .

If j ≥ N, it follows that

|bj | ≤ max
k≥0
|aj+1+k| ≤ | max

j≥N+1
aj | < |aN | .

By induction on N , it can be assumed that
∑∞
n=0 bjx

j has at most N−1 zeros in Zp. This implies
that f(X) has at most N zeros since it has the additional zero at x = α.

Corollary. For an analytic function f that is not identically zero, the set of zeros of f is discrete.

De�nition 16. For a complete nonarchimedian �eld K, a function f : D(a, r)→ K on some disk of radius
r with center in a is analytic if

f(z) =
∑
k≥0

ak(z − a)k ,

where the series converges for all z ∈ D(a, r).

This then allows u(n) to be treated as an analytic function on Zp. This will require the use of nonarchime-
dian exponents and logarithms. Here, it will only be noted that the nonarchimedian exponent is well-de�ned
as exp(z) for z ∈ Zp. Then it simply follows that exp(n log λi) = λni . More importantly, the nonarchimedian
logarithm is only de�ned on the disk D(1, ρp). Thus, it must be shown that all z lie in the disk D(1, ρp)
for log(z) to be well de�ned. This will be shown in the beginning of the proof of the Skolem-Mahler-Lech
theorem.

3.3 The Skolem-Mahler-Lech Theorem

Now to prove the main result.

Theorem. (Skolem-Mahler-Lech 1). Let (un) be a linear recurrence. Then there exists N ∈ Z≥1, a possibly
empty set S ⊆ {0, 1, ..., N − 1}, and a �nite set T ⊂ Z such that

un = 0 if and only if n ∈ T ∪ (S +NZ) .

and equivalently,

Theorem. (Skolem-Mahler-Lech 2). Let p1(T ), ..., ps(T ) ∈ C[T ] be some polynomials and λ1, ..., λs ∈ C× be
pairwise disjoint. Then there exists N ∈ N, a possibly empty set S ⊂ {0, 1, ..., N − 1}, and a �nite set T ⊂ Z
such that

p1(n)λ
n
1 + · · ·+ ps(n)λ

n
s = 0 if and only if n ∈ T ∪ (S +NZ) .

Proof. De�ne u(n) := p1(n)λ
n
1 + · · · + ps(n)λ

n
s for λ1, ...kλs ∈ K× and p1(T ), ..., ps(T ) ∈ K[T ]. Then there

exists a nonarchimedian absolute value | · |v on K such that

|λ1|v = · · · = |λs|v = 1 .

Then this v allows for a �nite extension of Qp into Kv, which is the completion with respect to | · |v.
The remaining necessary condition is a �eld in which log λi is de�ned, it will be necessary to obtain

|λi − 1|v < ρp = p−
1

p−1 . So let qv be the prime ideal of OKv
. Then the image of λ in the quotient ring

OKv/q
m
v is 1. That is, |λ− 1|v < ρp is equivalent to λ ≡ 1 (mod qmv ) for some m ∈ Z≥1. Then it follows that

λ ∈ O×Kv
, since |λ|v = 1.

Now recall Fermat's little theorem, which states that for prime p and integer a, ap ≡ a (mod p). Letting
N be the order of the ring OKv

/qmv , it follows that

λN ≡ 1 (mod qmv ) .
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Thus the λNi 's lie in the disk D(1, ρp), and logλNi is well-de�ned.
Then for each r ∈ {0, 1, ..., N − 1}, de�ne

ur(z) :=
∑

1≤i≤s

pi(r +Nz)λri exp(z log λ
N
i )

If n ≡ r (mod N), then n = r +Nk with u(n) = ur(k). Thus,

ur(k) =
∑

1≤i≤s

pi(r +Nk)λri exp(k log λ
N
i )

=
∑

1≤i≤s

pi(n)λ
r
i exp(k log λ

N
i )

=
∑

1≤i≤s

pi(n)λ
r
iλ
Nk
i

=
∑

1≤i≤s

pi(n)λ
n
i = u(n).

Then for a �xed r, consider the two cases.

Case 1. ur(z) is identically zero. Then u(n) = 0 for n ≡ r (mod N). These r's form a set S ⊆ {0, 1, ..., N−
1}.

Case 2. ur(z) is not identically zero. Then by Strassman's theorem, u(n) = 0 for �nitely many n ≡ r
(mod N). Then these zeros form a �nite set T ⊂ Z.

As a �nal note, the Skolem-Mahler-Lech Theorem gives neither the zero set nor its size. The question
of the number of zeros remains open. Similar conjectures are also unproven for various other �elds, partic-
ularly �elds of negative characteristic. There exists a generalization of this theorem to all �elds of positive
characteristic due to Harm Derkson in 2005.
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