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1 Introduction
When looking at a field, it is natural to wonder how we can move elements into a subfield, while
still maintaining the properties and laws of that subfield. That is, if we take a field F , and a field
K ⊃ F , what numbers k1, . . . ,kn ∈ K can we adjoin to F , and what field does this make? A heavily
explored example is C, specifically with finite extensions of the subfield Q. In particular, we can
look at algebraic extensions of Q, where all numbers adjoined to Q from C are the roots of some
polynomial in Q[X ], or polynomials with rational coefficients.

We can study these fields in the context of Galois Theory, where we look at the field homomor-
phisms of an extension, and the automorphisms of a field extension as a group under composition.
Of particular interest are Galois Extensions, where every field homomorphism is an automorphism.
Galois Theory gives a clear connection between field theory and group theory, and through it a
clearer understanding of these field extensions.

Functions in (x,y) where y2 = f (x) for a cubic polynomial f , otherwise known as elliptic
curves, can help us find such extensions. Beyond that, elliptic curves give us an easy way to put
Galois extensions into the context of linear algebra, by using representation theory. This transforms
what can be a very complex field of study into a simpler one. This paper includes a cursory
overview of Galois Theory, assumes knowledge of elliptic curves, and touches on Representation
Theory in order to display a beautiful connection all three share.

2 Galois Groups
In Galois Theory, the core idea is to look at a field extension K of F and its automorphisms. That
is, for f ∈ F , a field, if K is a finite extension of F , the Galois Group is the set of homomorphisms

σ : K −→ C
f 7−→ f

In other words, the homomorphisms which preserve the ring structures (addition and multi-
plication) and embed K into C, fixing F . Since this is a ring homomorphism, then this map is
injective.

Suppose σ(k) = σ(k′). σ(k)− σ(k′) = σ(k− k′) = 0. If k− k′ 6= 0, ∃(k− k′)−1 ⇒ σ((k−
k′)(k− k′)−1) = σ(1) = 1. But, σ((k− k′)(k− k′)−1) = 0 ·σ(k− k′)−1 = 0. So k = k′.
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Since σ is injective, it must preserve subfields, since for k ∈ K \F , f ∈ F ,

k f 6= 1⇒ σ(k f ) = σ(k)σ( f ) 6= 1.

It is clear then that Aut(K) is a group under composition. It is possible for a field homomor-
phism to take K to K′, where K′ is some different finite extension of F . This makes studying of
the field harder, since there is some function which we might stumble upon that would take us out
of the context we had been studying. However, if every field homomorphism is an automorphism,
then we call K a Galois extension of F , and denote

Aut(K) = Gal(K/F)

and call this the Galois Group of K over F . We might also say K is Galois over F. The group
law defined here is the composition of automorphisms. Since each automorphism is injective, it
has an inverse, thus making elements of this set invertible. If K is not Galois over F , we can take
the Galois Closure of K, where for each algebraic number in K, we collect the algebraic numbers
they go to under homomorphisms and include them in the generation of a new K′.

What are the ways we can find Galois extensions, particularly of Q? We can add members
of C, say α1, . . .αn, and take the smallest field containing all of these, calling it Q(α1, . . .αn) =
K. Then, we can check K is Galois by looking at embeddings K → C, which of these are field
homomorphisms, and if said field homomorphisms are isomorphisms. But, this can be rather
tedious. Instead, we will defer to a set of functions whose properties will simply yield us Galois
extensions through manipulation of solution groups.

3 Elliptic Curves and Points of Finite Order
An elliptic curve is the set of solutions to C(C) = {P = (x,y)|y2 = ax3 + bx2 + cx+ d}, where
a,b,c,d ∈Q. These solutions actually form a group law under addition, with the additive identity
being a point at infinity. In our cases, for cubics with rational coefficients this ”point at infinity”,
denoted O, is the vertical line in the projective plane. We can transform this curve in a way that
preserves the group, through a linear transformation, to the form y2 = x3 + ax2 + bx+ c (cf. [1,
Section 1.3]). We can explicitly list our group laws for addition and doubling, and through them
gain an idea of what multiplying a point by any scalar might look like.

For addition, we have for P = (x1,y1), Q = (x2,y2) distinct points in C(C),

P+Q = (x3, y3)

where

x3 =

(
y2− y1

x2− x1

)2

−a− x1− x2, y3 =
y2− y1

x2− x1
(x1− x3)− y1.

and 2P = 2(x,y) = (x′,y′), where

x′ =
x4−2bx2−8cx+b2−4ac

4x3 +4ax2 +4bx+4c
, y′ =

(
3x2 +2ax+b

2y

)
(x− x′)− y.
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In particular, this group law is commutative, so multiplication by scalars distributes. For ex-
ample:

n(P+Q) = P+Q+ . . .+P+Q = P+ . . .+P+Q+ . . .+Q = nP+nQ.

We can take a subgroup C[n], or the points P∈C(C), the points with coordinates in the complex
numbers, such that nP = O. In other words, this is the subgroup of points with order dividing n.
This group, it turns out, is finite.

Proposition 1:

C[n]∼= (Z/nZ)⊕ (Z/nZ)

Denote (Z/nZ)⊕ (Z/nZ) = (Z/nZ)2. We know that C(C) ∼= C/L, where L = {m1ω1 +
m2ω2 | m1,m2 ∈ Z, ω1,ω2 ∈ C} (cf. [1, Section 2.2]) That is, our points are isomorphic to points
inside a parallelogram on the complex plane. If we take the points of order 2, they appear in our
parallelogram like so:

where the shaded region is our fundamental domain. Then, if we multiply the points ω1
2 , ω2

2 ,
and ω1

2 + ω2
2 by 2, they go to the corners of our fundamental parallelogram, i.e. they are on the

lattice L. We can do this for any n, and can construct an isomorphism by looking at the map

f : (Z/nZ)2 −→ C/L

(a,b) 7−→ a
n

ω1 +
b
n

ω2

Indeed, a,b both have order dividing n, so the points on the curve correspoinding to f (a,b) for
a,b∈ (Z/nZ)2 also have order dividing n, since n f (a,b) = aω1+bω2 ∈ L⇔ n f (a,b) =O∈C(C).
From this map we get all points of order dividing n in C/L∼=C(C). With this explicit isomorphism,
the two groups are isomorphic.

4 Adjoining C[n] to Q
Since C[n] is finite, if we take C[n] = {O,(x1,y1), . . .(xm,ym)} we can take the finite field extension
Q(x1,y1, . . .xm,ym) and see what field we get. To help us, we have the following theorem:
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Theorem 1: The numbers xk,yk are algebraic for 1≤ k ≤ m
Proof. For (a), we must show the coordinates of points of finite order are algebraic. Let us start

with the x-coordinates. Take a point P = (x1,y1) with order dividing n.
Claim: x(kP) = xk =

φk(x1)
ψk(x1)

, where φk,ψk ∈ Q[x1], i.e. are polynomials in terms of x1 with
rational coefficients depending on i.

Denote kP = (xk,yk).
Case k = 1: x(P) = x1.
Assume this is true for integers k ≤ n. Then,

x((n+1)P1) = x(nP+P) =
(

yn− y1

xn− x1

)2

−a− x1− xn

By the induction hypothesis, all xn terms are polynomial in x1. From there it should be clear
how we eliminate everything except (yn− y1)

2 into polynomials of x1.

(yn− y1)
2 = y2

n− y2
1− y1yn

If f (x) is the function defining our elliptic curve, y2
n = f (xn), so it is polynomial in xn and

thus in x1. Likewise, y2
1 = f (x1), so it is polynomial in x1. Then, we just need to show y1yn is

polynomial in x1. To do this we need the following:
Claim: y(kP) = φ ′k(x1)

ψ ′k(x1)
y1, where φ ′k(x1),ψ

′
k(x1) ∈Q[x1].

Case k = 1: y(P) = y1.
Assume this is true for all integers k ≤ n−1. Then,

y(nP) = y((n−1)P+P) =
yn−1− y1

xn−1− x1
(x1− xn)− y1 = y1

(
yn−1y−1

1 −1
xn−1− x1

(x1− xn)−1

)

Then, by our secondary induction hypothesis, yn−1y−1
1 =

φ ′n−1(x1)

ψ ′n−1(x1)
y1y−1

1 =
φ ′n−1(x1)

ψ ′n−1(x1)
, so the equa-

tion in the parenthesis balances to a division of polynomials in xn, xn−1, and x1, which by our
primary induction hypothesis are all polynomial in x1. Then,

y(nP) =
φ ′n(x1)

ψ ′n(x1)
y1⇒ x(nP) = y1yn =

φ ′n(x1)

ψ ′n(x1)
y2

1 =
φ ′n(x1)

ψ ′n(x1)
f (x1)

which proves our claim for the addition formula. For the duplication formula, the process is
obvious for x-coordinates, since they do not rely on y. For y-coordinates,

y(2P) =
(

3x2
1 +2ax1 +b

2y1

)
(x1− x2)− y1 = y1

((
3x2

1 +2ax1 +b
2y2

1

)
(x1− x2)−1

)

= y1

((
3x2 +2ax+b

2 f (x1)

)
(x− x′)−1

)
.

From this it is clear our previous induction would also work here. Since P is a point of finite
order, there is some n for which ψn(x1) = 0, which is how we get the identity element in our elliptic
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curve group. In other words, x1 is the root of some polynomial with rational coefficients, so it is
algebraic. Then, the x-coordinates of multiples of P are also algebraic. Since y coordinates can
be written in terms of polynomials of x-coordinates, in particular via C : y2 = x3 + ax2 + bx+ c,
these are also algebraic for points of finite order. Thus, all coordinates of points of finite order are
algebraic.

In particular, Q(x1,y1, . . .xm,ym) = K is an algebraic extension of Q. We will call this as the
rationals adjoined the n-torsion points of C, or Q(C[n]).

Lemma: Take K′ to be the Galois Closure of K.

(a) C(K′) is a subgroup of C(C)

(b) Take the field automorphism

σ : K′→ K′,

that fixes Q and define it on the curve C such that

σ : C(K′)→C(C)

where

σ(P) =

{
(σ(x),σ(y)) if P = (x,y)
O if P = O

.

Then, σ defines a group homomorphism on C(K′). Moreover, σ(P) ∈ C(K′) for all P ∈
C(K′).

(c) σ preserves order.

Proof. Part (a): If we look at the duplication and addition formulas, and take P1 and P2 with
coordinates in K. Since K′ is generated by the x and y coordinates of n-torsion points and Q, the
group formulas for the elliptic curve tell us the coordinates of P1±P2 will also be in K′, since we
are simply performing field operations on these elements. Thus, P1±P2 ∈C(K′).

Part (b): Take σ(P+Q) for P,Q ∈ C(K), with P = (xp,yp), Q = (xq,yq). If we look at the
addition formula, we find

x(σ(P+Q)) = σ

((
yq− yp

xq− xp

)2

−a− xp− xq

)

=

(
σ(yq)−σ(yp)

σ(xq)−σ(xp)

)2

−a−σ(xp)−σ(xq)

= x(σ(P)+σ(Q))

We can manipulate σ in such a way because it is a field homomorphism of K′. It is easy
to see from here that this holds for the y-coordinate, and for the duplication formulas. Then,
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σ(P+Q) = σ(P)+σ(Q), and σ(O) = O, so it is a homomorphism of the group C(C). Since σ is
an automorphism of K′, the coordinates of σ(P+Q) must also be in K′, so σ(P+Q) ∈C(K′).

Part (c): Say P ∈C(K′) has order n, and σ(P) ∈C(K′) has order m. Then,

nσ(P) = σ(nP) = σ(O) = O.

So, m|n. Also, because σ is injective we can take its inverse, so

σ
−1(σ(mP)) = σ

−1(mσ(P)) = σ
−1(O) = mP.

So, n|m. Thus m = n.

Theorem 2: K =Q(x1,y1, . . .xm,ym) is Galois over Q.

Take σ satisfying the hypothesis of our Lemma. Then, since K is generated by the n-torsion
points of C, C[n] = {O,(x1,y1), . . . ,(xm,ym)}, if we take P∈C(K), σ(P) is also an n-torsion point.
By definition we include all the coordinates of n-torsion points, so the coordinates of σ(P) also land
in K. In other words, σ(xk),σ(yk) ∈ K ∀k, so σ(K)⊂ K. Therefore every field homomorphism of
K is an automorphism, so K is Galois over Q.

5 A Basis for C[n]

An important conclusion from Proposition 1 is that C[n] can be seen as generated by two elements.
These generators must have order n themselves, as a generator for Z/nZ as an additive group must
have order n. Pick two points of order n, and denote these generating points as P1 and P2. Then,

C[n] = {a1P1 +a2P2 | a1,a2 ∈ Z/nZ}.

We can look at σ ∈ Gal(K/Q), where K is Q(C[n]) = Q(x1,y1, . . . ,xm,ym), as before. If we
take σ of any P ∈C[n], we find

σ(P) = σ(a1P1 +a2P2) = a1σ(P1)+a2σ(P2).

So σ is determined solely by where it sends P1 and P2, the generators of C[n]. Both of these
points under σ are part of C[n] themselves, since σ preserves the order of points, so we can say

σ(P1) = Q1 = ασ P1 + γσ P2

σ(P2) = Q2 = βσ P1 +δσ P2

This way, we can describe all members of Gal(K/Q) as a change of basis of C[n]. We can see
this if we look at matrix multiplication on the right:

(P1 P2)

[
ασ βσ

γσ δσ

]
= (ασ P1 + γσ P2 βσ P1 +δσ P2)

Curiously, if we take σ ,τ ∈ Gal(K/Q), and look at σ ◦ τ , we cannot apply the τ matrix, then
the σ matrix. Instead, we must compose the matrices. To demonstrate:
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(σ ◦ τ)(P1) = σ(τ(P1)) = σ(ατP1 + γτP2) = ατσ(P1)+ γτσ(P2)

= ατ(ασ P1 + γσ P2)+ γτ(βσ P1 +δσ P2) = (ασ ατ +βσ γτ)P1 +(ατγσ + γτδσ )P2.

The reason for this is that we are looking at members of Gal(K/Q) acting as a group, indepen-
dently of their effect on C[n]. If we look at the matrix multiplication,[

ασ βσ

γσ δσ

][
ατ βτ

γτ δτ

]
=

[
ασ ατ +βσ γτ ασ βτ +βσ δτ

ατγσ + γτδσ βτγσ +δσ δτ

]
.

Then, if we multiply (P1 P2) on the right by this matrix, we find the result in the P1 place to
match (σ ◦ τ)(P1). Note that in all cases, α,β ,γ,δ ∈ Z/nZ. Say we were to look at σ−1. Then,
we would want the matrix to be[

ασ−1 βσ−1

γσ−1 δσ−1

]
=

[
ασ βσ

γσ δσ

]−1

=
1

ασ δσ −βσ γσ

[
δσ −βσ

−γσ ασ

]
Then, when we multiply the matrices for σ and σ−1, we clearly get the identity matrix. This

way of looking at members of Gal(K/Q) as matrices naturally gives rise to a group representation.

6 Group Representation of Gal(Q(C[n])/Q)

A Group Representation is a homomorphism of a group G called ρ , where

ρ : G−→ GLn(C)

where GLn(C) is the set of invertible matrices with complex entries. In particular, we are
looking at 2× 2 matrices with entries in Z/nZ to represent our group Gal(K/bbQ). We know
we can send each element of this group to GL2(Z/nZ), since each member of our group must be
invertible. Let us then define the homomorphism

ρn : Gal(Q(C[n])/Q)−→ GL2(Z/nZ)

σ 7−→
[

ασ βσ

γσ δσ

]
Our construction in the previous section shows the group operation of composition is respected

in the form of matrix multiplication, and inverses go to inverses, so indeed this is a homomorphism.

Proposition 2: ρn is injective.

It is sufficient to show Ker(ρn) = {1}. Take some σ ∈ Ker(ρn). Then,

ρn(σ) =

[
ασ βσ

γσ δσ

]
=

[
1 0
0 1

]
⇒ σ(P1) = P1,σ(P2) = P2.

Then, taking Q = a1P1 +a2P2 ∈C[n],
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σ(Q) = σ(a1P1 +a2P2) = a1σ(P1)+a2σ(P2) = a1P1 +a2P2 = Q.

So, if σ ∈ Ker(ρn), σ = 1, the identity map.

This result is massively important. Not only do we have a way to represent members of a
Galois group as relatively simple matrices, but this transformation is robust and gives us a 1-to-
1 correspondence in both groups. If we take Image(ρn) = ρn(Gal(Q(C[n])/Q), we see that the
image of this homomorphism is itself a subgroup of GL2(Z/nZ). It is then reasonable to look at
the size of this subgroup, which leads us to Serre’s Theorem.

Theorem 3 (Serre): Let C be a cubic curve of the form y2 = x3+ax2+bx+c, with coefficients
in Q, without complex multiplication. Then,

(a) ∃M, dependent on C, such that for all n≥ 1,

[GL2(Z/nZ) : Image(ρn)]< M.

(b) ∃ N ≥ 1 depending on C, such that for all n≥ 1 with the property gcd(n,N) = 1,

ρn : Gal(Q(C[n])/Q)−→ GL2(Z/nZ)

is an isomorphism.

We will not show the proof here, but we can at least see the intuition of (b). Given ρn is
injective, all we would need to show is that for certain n, as proposed, the sizes of the Galois
and General Linear groups are equal. To address complex multiplication: this is the idea that in
an elliptic curve C, one could multiply a point P by x+ iy = z ∈ C. To gain an idea of how we
might do this, we would need a notion of iP, or multiplication of a point by an imaginary number.
[1] addresses this topic more in-depth. There is an open problem regarding the generalization of
Serre’s Theorem, known as Serre’s Conjecture.

Conjecture (Serre): For all Weierstrass cubic curves C without complex multiplication, there
is some M such that

[GL2(Z/nZ) : ρn( Gal(Q(C[n])/Q) )]< M

for all curves C and all n≥ 1.
If ever proven true, Serre’s Conjecture would provide a great deal of information on the rep-

resentations of Galois groups, and thus on Galois groups themselves, by letting us know how
expressive these Galois Representations are in the space of integer matrices.

7 Conclusion
Recall we started our tour of Galois Representations by simply looking at how Elliptic Curves can
give us field extensions. Then, because they give us special field extensions, ones that are Galois,
we can use the properties of the Elliptic Curve to say something about the Galois group in terms
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of well-studied groups, in the form of 2-dimensional matrices over a finite ring. We could even
apply this to Fp if we took the p-torsion points of a curve. There are many paths for this branch
of mathematics, including going into topology and further into algebraic geometry. This paper is
just a glance at the depth and breadth of Galois Representations, and hopefully has given enough
information to aid in further exploration of the topic.
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