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1. Let the current stock price be denoted
1
Sp = Spexp ((r - 502)nAt + oV AtMn>

where the random walk is given by

with My = 0. Each walk X; is independent from the others and
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(a) Fiz time T = NAt and let N — oo, At — 0. Using the central limit theorem,
show that the distribution of log Sy /Sy converges to a normal distribution with
mean (r — £0*)T and variance o*T.

We note here that

log Z—N =(r— %H)T +0y/T/NMy
0

and that all values are fixed except My which is random. We know that by
the central limit theorem My /N is normally distributed with some mean and
variance. The mean is given as
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and the variance is given by
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we know that E[My]| = 0 so that we are left with

var <%MN> = <%>2E[M]2V].



So we have
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So that +Mpy ~ N(0,1/N). We will make the remark that if X ~ N(u,0?),
then aX +b~ N(u+0b,a%0?). This means that My ~ N (0, N). From this fact,
we also get that log Sy /Sp is normally distributed with the correct mean and
variance specified in the question.

(b) Show that if X ~ N(u,B3?), the EleX] = e"tP%/2 Does eX have a normal
distribution?
EleX] = et t0%/2 is the definition of the moment generating function of the
normal distribution. eX has the log-normal distribution and only takes positive
values.

(¢) Using part (b), assume T is fized, show that

E[ lim S(T)] = Spe™ T
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Then we have
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From part (a), we have that, in the limit as N — oo (or At — 0), we have that
(r—30*)T+0+\/T/NMy ~ N((r—30)T,0%T). And from part(b), we get that
taking the expectation gives us
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2. Let S, be the above process, show that the process
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where
D %(egm ooV (r-hot)at



is a martingale. When At is small enough show that

D~ e~ (1+rAt).

We show from the martingale property that
En [Sn+l:| = gn

To begin we have
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