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Abstract

The purpose of this project is to discuss current trends in graduation data at the
University of Utah. Administrators and staff have a need to understand what gradua-
tion trends are occuring, this research will serve to specify, using statistical methods,
those trends. It will be left up to the staff and administration to interpret these results
in the larger context of their knowledge about the institution.
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1 Data Collection and Cleaning

The data used for this analysis was collected from the course and graduation tables main-
tained by the Office of Budget and Analysis. These tables are extracted from the campus
computing system every year in August and include all degrees posted to the system by the
graduation office beginning July 1 of the previous year and ending June 30 of the current
year. Each graduation file includes one line for each degree that was given by the university
during a given year. Students earning two degrees in one year will appear in the file twice.

The variable of interest is the number of credits students have accumulated at the time
of graduation. We are only interested in the number of credits undergraduates have taken.
It became evident early on that some additional cleaning would be necessary. University
graduation requirements state that a student graduating with a bachelor’s degree must have
at least 122 semester credits (183 quarter credits). The graduation files have many students
who graduate with fewer than the minimum number of credits for a variety of reasons. In
order to remove the students not meeting the graduation requirements, students who were
working on second bachelor’s degrees were excluded. This criteria resulted in much fewer
students not meeting the graduation requirements. Later it was decided to also relax the
credit requirement to 120 and 180 credits, which also reduced the number of students not
meeting minimum requirements in the data set. The remaining students who did not meet
the minimum requirements were eliminated.

The university went from a quarter system to a semester system starting in the 1998/1999
academic year. All credits were converted with a factor of 2/3 before this date. Before
this switch the university only recorded credit earned at the University of Utah under the
total credit category, for each of the years before the switch all other credit was added into
the total credit amount before making the calculations for minimum credit requirements.
Consequently transfer credit, test credit and other credit were included in the final data
set. The minimum credit requirement was subtracted from the number of credits earned
since it is assumed that all students have earned above the minimum.

2 Credits at Graduation

Graduation requirements state that a student must have at least 120 credits to graduate.
We could view the number of credits taken as a waiting time, once a student earns 120 cred-
its, they continue to take courses until they meet their particular graduation requirements.
For these reasons, it makes sense to use the exponential distribution to model number of
credits to graduation. The plots in Figure 1 and Figure 2 show kernel density estimators
for credits to graduation for each academic year. Each density plot shows something close
to an exponential shape, the values in Table 1 show that the mean and standard deviation
of the total credit hours are roughly the same, another feature of exponential data. A
generalized likelihood ratio test will be derived to determine if the yearly averages are all
the same after the data is tested for the exponential assumption.
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Figure 1: Density Plots for Academic Years 1997 - 2000
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Figure 2: Density Plots for Academic Years 2001 - 2006
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Year Mean St Deviation

1997 22.119 21.436
1998 21.828 22.066
1999 22.465 22.595
2000 22.359 21.648
2001 23.009 21.983
2002 22.985 22.671
2003 23.533 23.007
2004 24.009 23.392
2005 24.544 23.886
2006 25.148 24.670

Table 1: Mean and Standard Deviation of Excess Credits

3 Tests for Exponentially Distributed Data

We would like to test the graduation data for the assumption that it is exponentially
distributed. Three tests will be derived and performed to verify this assumption.

3.1 χ
2 Test

Assume that X1,X2, . . . ,Xn are independent and identically distributed random variables
with distribution funcion F and let F0 be a distribution function. We would like to test

H0 : there is a θ such that (θ ∈ Θ,dimΘ = d), F (t) = F0(t; θ) for all t

against the alternative HA : H0 not true. We would like to show that our data comes from
the exponential distribution so that

F0(x; θ) = 1 − e−x/θ

and d = dimΘ = 1. Then we divide the data into K cells so that 0 = t0 < t1 < · · · < tK =
∞ and define

Yi =
∑

1≤j≤n

I{ti−1 < Xj ≤ ti}.

Then (Y1, Y2, . . . , YK) is multinomial with parameters (n, p1, p2, . . . , pK) where pi = F (ti)−
F (ti−1). If H0 holds, then there is θ ∈ Θ such that

pi = F0(ti; θ) − F0(ti−1; θ),

which, under H0, becomes

pi = (1 − e−ti/θ) − (1 − e−ti−1/θ) = e−ti−1/θ − e−ti/θ

4



The multinomial random sample depends on the parameter θ. We will estimate θ from
y1, y2, . . . , yK using the maximum likelihood method, the estimator is denoted θ̂. The
multinomial distribution (Y1, Y2, . . . , YK) has the density function

P{Y1 = y1, . . . , YK = yk} =
n!

y1! · · · yK !
py1

1 · · · pyK

K

which we need to maximize with respect to θ. Under H0, we have the likelihood function

L =
n!

y1! · · · yK !
(F0(t1; θ) − F0(t0; θ))y1 · · · (F0(tK−1; θ) − F0(tK ; θ))yK

and the log-likelihood is

ℓ = log n! −
K
∑

i=1

log yi! +
K
∑

i=1

yi log (F0(ti; θ) − F0(ti−1; θ)).

After substituting the distribution function for the exponential distribution, the log-likelihood
becomes

ℓ = log n! −
K
∑

i=1

log yi! +

K
∑

i=1

yi log
(

e−ti−1/θ − e−ti/θ
)

.

In order to find the maximum likelihood estimate, we take the derivative of ℓ with respect
to θ and set to zero, which gives the expression

∂ℓ

∂θ
=

K
∑

i=1

1

θ2

(

ti−1e
−ti−1/θ − tie

−ti/θ

e−ti−1/θ − e−ti/θ

)

= 0.

We can eliminate the θ2 factor so that the expression becomes

∂ℓ

∂θ
=

K
∑

i=1

(

ti−1e
−ti−1/θ − tie

−ti/θ

e−ti−1/θ − e−ti/θ

)

= 0.

There is no simple solution for this equation. On general advice from Bain and Englehart
[1], we use θ̂ = X̄ . The test statistic is then defined as

Q =
∑

1≤i≤K

(Yi − n[F0(ti, θ̂) − F0(ti−1, θ̂)])
2

n[F0(ti, θ̂) − F0(ti−1, θ̂)]
.

If H0 holds, then Q can be approximated with the χ2 distribution with K − d − 1 degrees
of freedom. Here we take d = 1 for the one estimated paramter θ̂.

Table 2 shows the results of the χ2 test when performed on the data as a whole and
when performed on each year’s credits separately. We see that the χ2 test does not reject for
any of these cases meaning that we can assume that the data is exponentially distributed.
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Year Q df p value

1997 1.721 16 1.000

1998 2.838 14 0.999

1999 3.770 13 0.993

2000 2.015 15 1.000

2001 0.961 8 0.998

2002 0.925 9 1.000

2003 2.762 17 1.000

2004 0.885 11 1.000

2005 1.097 8 0.998

2006 0.995 8 0.998

All 5.462 11 0.907

Table 2: Results for χ2 test for exponentially distributed data

3.2 Transformation into uniform order statistics

Let X1, . . . ,Xn be independent, identically distributed exponential random variables with
mean θ and define

S(i) = X1 + X2 + · · · + Xi.

Then
(

S(1)

S(n)
,
S(2)

S(n)
, . . . ,

S(n − 1)

S(n)

)

has the same distribution as the order statistics of n − 1 independent uniform [0, 1] ran-
dom variables. So we can apply the general results on the uniform empirical distribution
function. For example,

√
n max

1≤k≤n−1

∣

∣

∣

∣

S(k)

S(n)
− k

n

∣

∣

∣

∣

gives the Kolmogorov-Smirnov statistic and

∑

1≤k≤n−1

(

S(k)

S(n)
− k

n

)2

gives the Cramér-von Mises statistic. Critical values for the following modification of the
Cramér-von Mises statistic can be found in the Appendix of Bain and Englehardt [1]:

CM =
1

12n
+

n
∑

i=1

(

F0(xi; θ̂) − i − 0.5

n

)2

.

However, the critical values for the Kolmogorov-Smirnov statistic are only calculated for a
fully specified distribution and not for the case where the parameters are estimated. The

6



critical values for the Kolmogorov-Smirnov statistic are taken from Lilliefors [5] and we use
the following modification as our test statistic :

D = max
1≤i≤n

|F0(Xi) − Sn(Xi)|

where F0 is the cumulative distribution function for the exponential distribution with pa-
rameter 1/θ = X̄ and Sn is the sample cumulative distribution function.

Year D Critical Value CM Critical Value

1997 0.0787 0.0564 1.56 0.224

1998 0.0779 0.0556 1.29 0.224

1999 0.0646 0.0314 2.13 0.224

2000 0.0734 0.0294 2.44 0.224

2001 0.0755 0.0287 1.90 0.224

2002 0.0855 0.0275 2.11 0.224

2003 0.0885 0.0276 2.37 0.224

2004 0.0798 0.0294 1.88 0.224

2005 0.0796 0.0309 2.39 0.224

2006 0.0938 0.0355 2.00 0.224

All 0.0787 0.0150 17.38 0.224

Table 3: Results for KS and Cramér-von Mises Tests

Table 3 shows the results for the Kolmogorov-Smirnov tests and Cramér-von Mises
tests. As in the previous subsection, these tests were performed for each individual year
and all years combined. In this case both tests reject the exponential assumption under all
circumstances.

3.3 Total time on test

For this test, we note that f0(t) = exp (−t)I(t ≥ 0) and F−1
0 (t) = − log (1 − t) and therefore

f0(F
−1
0 (t)) = 1 − t, 0 ≤ t ≤ 1.

Then {Tk : 1 ≤ k ≤ n − 1} is the Total Time on Test transform, where

Tk =

k
∑

i=1

(n − i + 1)(Xi+1,n − Xi,n)

n−1
∑

i=1

(n − i + 1)(Xi+1,n − Xi,n)

, 1 ≤ k ≤ n − 1.

It can be shown that if the observations are exponential then

t1 =
√

n max
1≤k≤n−1

∣

∣

∣

∣

Tk − k

n

∣

∣

∣

∣

d−→ sup
0≤t≤1

|B(t)|
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and

t2 =

n−1
∑

k=1

(

Tk − k

n

)2
d−→

∫ 1

0
B2(t) dt,

where {B(t) : 0 ≤ t ≤ 1} is a Brownian bridge.
Table 4 shows values for t1 and t2 for each year and for all years combined. The critical

values for t1 and t2 are found in Bain and Englhardt [1]. The α = 0.05 critical value for t1
is 0.461 and for α = 0.01 the critical value is 0.743. In all cases we reject the assumption
that the data comes from the exponential distribution. The α = 0.05 critical value for t2 is
1.094, the α = 0.01 critical value is 1.298. Again, we see that in all cases the exponential
assumption is rejected.

Year t1 t2
1997 2.906 3.946

1998 2.805 4.038

1999 3.709 5.855

2000 4.016 7.547

2001 3.534 6.060

2002 3.559 4.905

2003 3.669 6.217

2004 3.617 5.382

2005 4.008 6.714

2006 3.930 6.154

All 9.835 50.233

Table 4: Values for Total Time on Test Transformation

The density plots in Figure 1 and 2, show the reason why the Cramér-von Mises,
Kolmogorov-Smirnov and total time on test transformation tests reject the exponential
assumption. If the data were exponentially distributed, these density plots would start at
a maximum value of zero and decrease from that point on, instead the maximum is not
reached until around four credits (in most cases). All of these tests determine the deviation
of the empirical distribution function from the assumed exponential distribution function.
Figures 3 and 4 show QQ-plots for all academic years, each plot shows a red line showing
where the data points should be located if they come from an exponential distribution. In
all cases, the points representing the empirical distribution function dip below the expected
line at the beginning. This dip corresponds to the point where the maximum is reached
in the density plots of Figures 1 and 2. The the χ2 test does not reject the hypothesis
that the data come from an exponential distribution due to the fact that the large amount
of data that appear at about four credits all fit in one cell. The more sophisticated tests,
however, are able to determine the deviation from the exponential distribution.

Since the Gamma distribution is an abstraction of the exponential distribution, it is
the next obvious choice. We note here that Exp(θ) = Gamma(1, θ) and that for Gamma
distributed data Xi > 0. Because of the way the data was extracted we recognize that there

8
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Figure 3: QQ-Plots for Academic Years 1997 - 2000
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Figure 4: QQ-Plots for Academic Years 2001 - 2006
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are some data points that are zero. We will attempt to show that the simple transformation
Y = X +1 follows the Gamma distribution. We will attempt to show this assumption using
a simple graphical method. We previously determined the reason the data does not follow
the exponential distribution is due to the increase in the empirical density function around
four credits. Figure 5 and 6 show density plots of the underlying data in red with a density
plot of the Gamma density function in blue for the same data points. The density function
of the Gamma distribution is given as

f(x) =
1

θκΓ(κ)
xκ−1e−x/θ, x > 0.

Here we use the maximum likelihood estimates of the parameters κ and θ. The maximum
likelihood extimate of θ is given by Bain and Englhardt [1] as

θ̂ =
x̄

κ̂
.

The equation for the maximum likelihood estimate of κ is also given by Bain and Englehardt
[1] and is the solution to

log κ̂ − Ψ(κ̂) − log x̄/x̃ = 0

where x̃ is the geometric mean of the data and the psi function is defined as

Ψ(x) =
Γ′(κ)

Γ(κ)
.

Here we see that the maximum likelihood estimate of κ cannot be be solved in closed form.
Bain and Englehardt [1] note that the following approximation can be used for κ̂

κ̂ =
0.5000876 + 0.1648852M − 0.0544274M2

M
0 < M ≤ 0.5772, (3.1)

where M = log x̄/x̃. Table 5 shows the parameters for the Gamma distributions plotted
in Figures 5 and 6. Notice that the values for M fall in the interval specified by (3.1), so
that we will not note the equations for values of M that fall outside this interval.

Figures 5 and 6 show a strong correspondance between the empirical density function
and the Gamma density. The values for κ in Table 5 show that the data deviate from
the exponential distribution by only a small amount. On the surface, the exponential
assumption is a good one however, the deviation from the exponential distribution shows
that by and large students do not graduate with the minimum number of credits, but are
more likely to take slightly more than the minimum requirement.

4 Generalized Likelihood Ratio Test

Here we derive the generalized likelihood ratio test for exponentially distributed data to
test homogeneity. Even though the previous subsection discussed the fact that the data

11
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Figure 5: Comparison to Gamma Distribution for Academic Years 1996 - 2000
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Figure 6: Comparison to Gamma Distribution for Academic Years 2001 - 2006

13



Year M κ̂ θ̂

1997 0.46180 1.2227 18.909

1998 0.47887 1.1831 19.294

1999 0.49017 1.1584 20.256

2000 0.48407 1.1716 19.938

2001 0.48335 1.1732 20.464

2002 0.50057 1.1367 21.101

2003 0.49979 1.1383 21.553

2004 0.48835 1.1623 21.516

2005 0.49477 1.1487 22.237

2006 0.50994 1.1178 23.392

All 0.49107 1.1565 21.013

Table 5: Parameter values for the Gamma distribution

deviate from the exponential distribution, it will be used since we are dealing with averages
and the deviation is not large. We will make the following assumption about our data

Xij ∼ Exp(θi) 1 ≤ i ≤ k, 1 ≤ j ≤ ni

where the data represent independent random variables. This means that {Xij} are in-
dependent. We let, k = 10, for each of the years under consideration, ni is the number
of students graduating in the ith year and Xij is the number of credit hours (above the
minimum requirement) for the jth student in the ith year. We will also denote the total
number of observations as follows.

N =

k
∑

i=1

ni

A test will be derived for the following hypothesis.

H0 : θ1 = θ2 = . . . = θk Ha : θ1 6= θ2 6= . . . 6= θk

The generalized likelihood ratio as given by Bain and Englehardt [1] is defined as

Λ(X) =

max
θ∈Ω0

f(X; θ)

max
θ∈Ω

f(X; θ1, . . . , θk)
=

f(X; θ̂)

f(X; θ̂1, . . . , θ̂k)
,

where X = {Xij ; 1 ≤ j ≤ ni, 1 ≤ i ≤ k}, Ω0 = {θ1 = θ2 = · · · = θk > 0} and Ω =

{θ1 > 0, θ2 > 0, . . . , θk > 0}. We also note that θ̂ and θ̂1, . . . , θ̂k denote the corresponding
maximum likelihood estimators. The log likelihood function is given as

log Λ(X) = log f(X; θ̂) − log f(X; θ̂1, . . . , θ̂k).

If H0 holds, then −2 log Λ(X) ∼ χ2
k−1.
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Next we find the individual log likelihood functions under the null and under the alter-
native. We will derive equations for the maximum likelihood estimates and log likelihood
functions. Under H0 we have

L(X; θ) =
k
∏

i=1

ni
∏

j=1

1

θ
e−Xij/θ =

k
∏

i=1

1

θni
exp



−1

θ

ni
∑

j=1

Xij



,

=
1

θn1+...+nk
exp



−1

θ

k
∑

i=1

ni
∑

j

Xij





and therefore

ℓ(X; θ) = −
k
∑

i=1

ni log θ − 1

θ

k
∑

i=1

ni
∑

j=1

Xij. (4.1)

Then we get an expression for the maximum likelihood estimate by differentiating (4.1)
and solving for zero. Namely,

∂ℓ

∂θ
= −1

θ

k
∑

i=1

ni +
1

θ2

k
∑

i=1

ni
∑

j=1

Xij = 0

and therefore

1

θ

k
∑

i=1

ni =
1

θ2

k
∑

i=1

ni
∑

j=1

Xij

so that we get

θ̂ =

(

k
∑

k=1

ni

)−1 k
∑

i=1

ni
∑

j=1

Xij .

Then we substitute θ̂ into the log likelihood for the final calculations

ℓ(X; θ̂) = −
k
∑

i=1

ni log θ̂ − 1

θ̂

k
∑

i=1

ni
∑

j=1

Xij

so that

ℓ(X; θ̂) = −
k
∑

i=1

ni log θ̂ −
k
∑

i=1

ni.

Next, we derive the likelihood function under the alternative. By independence we
obtain that

L(X; θ1, . . . , θk) =

k
∏

i=1

ni
∏

j=1

1

θi
e−Xij/θi =

k
∏

i=1

1

θni

i

exp



− 1

θi

ni
∑

j=1

Xij



,

15



which is the same as

L(X; θ1, . . . , θk) =

(

k
∏

i=1

1

θni

i

)

exp



−
k
∑

i=1

1

θi

ni
∑

j=1

Xij



.

Then for the log-likelihood function we get that

ℓ(X ; θ1, . . . , θk) = −
k
∑

i=1

ni log θi −
k
∑

i=1

1

θi

ni
∑

j=1

Xij. (4.2)

Solving the partial derivatives of (4.2) with respect to θ1, θ2, . . . , θk for zero we conclude

∂ℓ

∂θi
= −ni

θi
+

1

θ2
i

ni
∑

j=1

Xij = 0.

Solving for θ̂i, we get

θ̂i =
1

ni

ni
∑

j=1

Xij.

Finally, the maximum of the log likelihood has the following form:

ℓ(X; θ̂1, . . . , θ̂k) = −
k
∑

i=1

ni log θ̂i −
k
∑

i=1

1

θ̂i

ni
∑

j=1

Xij

= −
k
∑

i=1

ni log θ̂i −
k
∑

i=1

ni.

Then we have the following generalized log likelihood function

log Λ(X) =
k
∑

i=1

ni log θ̂i −
(

k
∑

i=1

ni

)

log θ̂. (4.3)

As mentioned above, we have that −2 log Λ(X) ≈ χ2(k − 1). This will now be shown.
First, we will use the following approximation:

log (x) = log (1 + x − 1) ≈ (x − 1) − 1

2
(x − 1)2

as x → 1. Then we have the following Taylor expansion for −2 log Λ(x):

−2 log Λ(X) = −2
k
∑

i=1

ni log

(

θ̂i

θ̂

)

,

≈ −2
k
∑

i=1

ni

(

θ̂i

θ̂
− 1

)

+ 2
1

2

k
∑

i=1

ni

(

θ̂i

θ̂
− 1

)2

. (4.4)
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The first term in (4.4) is actually zero, since

−2

k
∑

i=1

ni

(

θ̂i

θ̂
− 1

)

= −2

k
∑

i=1

ni

(

θ̂i − θ̂

θ̂

)

= −2

θ̂

k
∑

i=1

ni

(

θ̂i − θ̂
)

. (4.5)

Equation (4.5) is zero regardless of the leading term, since by the definitions of θ̂i and θ̂
we have

k
∑

i=1

(

niθ̂i − niθ̂
)

=
k
∑

i=1

ni
∑

j=1

xij −
k
∑

i=1

niθ̂,

which simplifies to

k
∑

i=1

ni
∑

j=1

Xij −
k
∑

i=1

ni

(

k
∑

k=1

ni

)−1 k
∑

i=1

ni
∑

j=1

Xij = 0.

This means that −2 log Λ(X) can be approximated with

−2 log Λ(X) ≈
k
∑

i=1

ni

(

θ̂i − θ̂

θ̂

)2

.

We use the test statistic

T =

k
∑

i=1

ni

(

θ̂i − θ̂

θ̂

)2

(4.6)

to obtain results. Some experimentation with (4.3) revealed that, due to the uneven sample
sizes, negative numbers were occasionally returned. Equation (4.6) will not exhibit this
behavior and, therefore, is a better choice for our statistic. We note that T is approximately
χ2(k − 1) according to the general theory of the generalized likelihood method since

k
∑

i=1

ni

(

θ̂i − θ̂

θ̂

)

= 0.

4.1 Results

The generalized likelihood ratio test in Section 4 was derived to test for homogeneity of
the average number of credits students took to graduate. The first test performed was to
determine whether there is one mean for all years or not. A p-value of 1.084847 × 10−10

resulted, the hypothesis that the mean remains the same for all years is rejected at any
reasonable level of significance.

Next, the following procedure was used, we start with the data from 1997 and keep
adding the data from consecutive years until a p-value less than some αi is achieved. The
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index i is used to specify which of the tests was performed, in this case i = 1. Then we say
that the years 1997 through the last year before α1 is achieved are homogeneous. Then we
take a new set of data starting with the year that made the previous tests fail and add the
data from consecutive years until the test rejects H0 again at the confidence level α2 and
so on. We would also like to have joint coverage for all of the tests performed. This is done
using the Bonferroni method of multiple comparisons from Johnson and Wichern [2]. Let
Ci denote the ith test perfomed where

P{Ci true} = 1 − αi, i = 1, 2, . . . ,m.

We use the Bonferroni inequality to have joint coverage for all of the tests performed. We
have the following relation

P{all Ci true} = 1 − P{at least one Ci false},

and by the Bonferonni inequality

1 − P{at least one Ci false} ≥ 1 −
m
∑

i=1

P{Ci false}

furthermore,

1 −
m
∑

i=1

P{Ci false} = 1 −
m
∑

i=1

(1 − P{Ci true})

and finally we have

P{all Ci true} ≥ 1 −
m
∑

i=1

αi

Then we say that there is joint coverage for all tests where

α =

m
∑

i=1

αi.

We will take αi = α/m as our choice for the αi and we assume that m = 2, or that there
will only be two tests necessary. We would like α = 0.05, so that αi = 0.025.

The p-values for this procedure are found in Table 6. These tests indicate that the
average of excess credits is the same from the years 1997 through 2003 and again from 2004
to 2006. We conclude that the number of excess credits is growing over the last ten years.
However, it appears that the average is not growing steadily, as we expect, but jumps up
every few years. Figure 7 shows a plot of the average excess credits by year along with
lines representing the averages from the hypothesis tests that were performed. It shows
that the underlying data actually does display an upward trend, however, the statistical
tests show two change points within the data. The next section will explore ways to test
validity of the the change points.
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Figure 7: Average excess credits by year
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Start Year End Year p-value

1997 2003 0.047
1997 2004 0.001
2004 2006 0.148

Table 6: Tests for Homogeneity

5 Regression Obeying Two Different Regimes

Figure 7 suggests that there is a change in the average number of excess credits from the
period 1997 through 2003 to the period 2003 through 2005. Quandt [3] suggested some
methods for testing the significance of such a jump using regression. Under regression, we
make the assumption that our data is normally distributed. A likelihood ratio test will be
derived using the ratio

Λk = max
2≤k≤N−2

Lk(y)

L(y)
. (5.1)

We reject H0, that no regime shift occurred, if Λk is large.
In order to develop Lk(y), we assume the existence of two relationships within the data,

the relationships are of the form

yi = α1xi + β1 + εi 1 ≤ i ≤ k∗

yi = α2xi + β2 + εi k∗ < i ≤ N,

where εi are normally and independently distributed error terms with zero mean and vari-
ances σ2

1 and σ2
2 . Likelihood ratios will be developed for a three different scenarios. In our

case,

yi =
1

ni

ni
∑

j=1

Xij,

the average credit hours to graduate, xi denotes the year associated with each average.
Since yi is an average, normality of the y’s can be assumed. Since randomness comes from
the εi’s, the normality of the errors is also assumed.

5.1 Variances unknown and unequal

First we look at the scenario that σ2
1 and σ2

2 are unknown and σ2
1 6= σ2

2 . Using the normality
assumption, we derive a maximum likelihood function to estimate the unknown parameters
α1, β1, σ

2
1 , α2, β2 and σ2

2 assuming that k∗ is some known value k. The likelihood function
under the alternative is given as

Lk(y) =
k
∏

i=1

1
√

2πσ2
1

e
− 1

2σ2
1

(yi−α1xi−β1)2
N
∏

i=k+1

1
√

2πσ2
2

e
− 1

2σ2
2

(yi−α2xi−β2)2

.
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We say that a change (or regime shift) occurred at time k where the parameters changed
from (α1, β1, σ

2
1) to (α2, β2, σ

2
2). In order to find the maximum likelihood estimates for each

of the parameters, we find the log-likelihood assuming independence

ℓk(y) = −N

2
− k

2
log σ2

1−
N − k

2
log σ2

2−
1

2σ2
1

k
∑

i=1

(yi−α1xi−β1)
2− 1

2σ2
2

N
∑

i=k+1

(yi−α2xi−β2)
2.

To find the maximum likelihood estimate for (α1, β1, σ
2
1 , α2, β2, σ

2
2), we solve the following

partial derivatives for zero:

∂ℓk(y)

∂α1
= − 1

2σ2
1

k
∑

i=1

2(yi − α1xi − β1)(−xi) = 0

∂ℓk(y)

∂β1
= − 1

2σ2
1

k
∑

i=1

2(yi − α1xi − β1)(−1) = 0

∂ℓk(y)

∂σ2
1

= − k

2σ2
1

+
1

2σ4
1

k
∑

i=1

(yi − α1xi − β1)
2 = 0

∂ℓk(y)

∂α2
= − 1

2σ2
2

N
∑

i=k+1

2(yi − α2xi − β2)(−xi) = 0

∂ℓk(y)

∂β2
= − 1

2σ2
2

N
∑

i=k+1

2(yi − α2xi − β2)(−2) = 0

∂ℓk(y)

∂σ2
2

= −N − k

2σ2
2

+
2

2σ4
2

N
∑

i=k+1

(yi − α2xi − β2)
2 = 0.

To calculate the maximum likelihood estimate for α1, we solve

∂ℓk(y)

∂α1
= − 1

2σ2
1

k
∑

i=1

2(yi − α1xi − β1)(−xi),

collecting terms and setting equal to zero, we get

1

σ2
1

k
∑

i=1

(yixi − α1x
2
i − β1xi) = 0,

moving the α1 terms to the other side, we get

α1

k
∑

i=1

x2
i

σ2
1

=
1

σ2
1

k
∑

i=1

(yixi − β1xi).
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Then we solve for the maximum likelihood estimate α̂1,k and get

α̂1,k =

k
∑

i=1

(yixi − β̂1,kxi)

k
∑

i=1

x2
i

=

k
∑

i=1

(yi − β̂1,k)xi

k
∑

i=1

x2
i

where β̂1,k is the maximum likelihood estimate for β1. Next, we find the maximum likeli-
hood estimate for β1 by taking the partial derivative with respect to β1

∂ℓk(y)

∂β1
= − 1

2σ2
1

k
∑

i=1

2(yi − α1xi − β1)(−1) = 0

collecting terms and setting equal to zero yields

1

σ2
1

k
∑

i=1

(yi − α1xi − β1) = 0,

collecting the β1 terms and moving this term to the other side we achieve

kβ1

σ2
1

=
1

σ2
1

k
∑

i=1

(Yi − α1xi),

which yields the maximum likelihood estimate

β̂1,k =
1

k

k
∑

i=1

(yi − α̂1,kxi).

Using the linear equations for α̂1,k and β̂1,k, we can rewrite the expression for α̂1,k as
follows:

α̂1,k =

k

k
∑

i=1

yixi −
k
∑

i=1

yi

k
∑

i=1

xi

k

k
∑

i=1

x2
i −

(

k
∑

i=1

xi

)2 ,

and

β̂1,k =
1

k

k
∑

i=1

(yi − α̂1,kxi).

We see that α̂1,k and β̂1,k are the usual least-squares estimates. We also note that the

maximum likelihood estimates α̂2,k and β̂2,k are also their respective least-squares estimates
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and have similar equations. Next, we derive the maximum likelihood estimate for σ2
1 from

the equation

∂ℓk(y)

∂σ2
1

= − k

2σ2
1

+
1

2σ4
1

k
∑

i=1

(yi − α1xi − β1)
2 = 0.

Solving for zero, we get the following as the maximum likelihood estimate for σ2
1 :

σ̂2
1,k =

1

k

k
∑

i=1

(yi − α̂1xi − β̂1)
2.

Again, there is a similar expression for σ̂2
2,k. After substituting the maximum likelihood

estimates, we get

ℓk(y) = −N

2
log 2π − k

2
log σ̂2

1,k − N − k

2
log σ̂2

2,k −
k

2
− N − k

2
.

This completes the calculations of the log-likelihood function under the alternative hy-
pothesis that exactly one switch occurred within the data set. It remains to calculate the
log-likelihood function under the null hypothesis that no change occurs. Under H0, the
likelihood function is given as

L(y) =

N
∏

i=1

1√
2πσ2

e−
1

2σ2
(yi−αxi−β)2 ,

which can be rewritten as follows

L(y) =

(

1

2πσ2

)N/2

exp− 1

2σ2

N
∑

i=1

(yi − αxi − β)2.

The log-likelihood function is given as

ℓ(y) = −N

2
log 2π − N

2
log σ2 − 1

2σ2

N
∑

i=1

(yi − αxi − β)2.

To find the maximum likelihood estimate of (α, β, σ2), we take the partial derivatives

∂ℓ(y)

∂α
= − 1

2σ2

N
∑

i=1

2(yi − αxi − β)(−xi)

∂ℓ(y)

∂β
= − 1

2σ2

N
∑

i=1

2(yi − αxi − β)(−1)

∂ℓ(y)

∂σ2
= − N

2σ2
+

1

2σ4

N
∑

i=1

(yi − αxi − β)2
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and solve for zero. We begin by finding the maximum likelihood estimate of α, by multi-
plying through by −2xi to get

1

σ2

N
∑

i=1

(yixi − αx2
i − βxi) = 0.

Separating out the α terms and adding to zero, we get

α

N
∑

i=1

x2
i

σ2
=

1

σ2

N
∑

i=1

(yixi − βxi).

So that the maximum likelihood estimate α̂ is defined as

α̂ =

N
∑

i=1

xi(yi − β̂)

N
∑

i=1

x2
i

,

where β̂ is the maximum likelihood estimate of β. To obtain the maximum likelihood
estimate of β, we solve

− 1

2σ2

N
∑

i=1

2(yi − αxi − β)(−1) = 0.

Multiplying through by −2 and moving the β term out of the summation, we get

Nβ

σ2
=

1

σ2

N
∑

i=1

(yi − αxi).

So that the maximum likelihood estimate β̂ is given as

β̂ =
1

N

N
∑

i=1

(yi − α̂xi).

To derive the maximum likelihood estimate for σ2, we solve the equation

− N

2σ2
+

1

2σ4

N
∑

i=1

(yi − αxi − β)2 = 0.

The solution to this gives us the definition

σ̂2 =
1

N

N
∑

i=1

(yi − α̂xi − β̂)2.
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Plugging the maximum likelihood estimates into ℓ(y) yields the maximum of the log-
likelihood function

ℓ(y) = −N

2
log 2π − N

2
log σ̂2 − N

2
(5.2)

Next, we determine an expression for the log-likelihood ratio, which is given as

λk = log Λk = ℓk(y) − ℓ(y),

so that we get

λk = −N

2
log 2π − k

2
log σ̂2

1,k − N − k

2
log σ̂2

2,k −
N

2
− (−N

2
log 2π − N

2
log σ̂2 − N

2
).

After some simplification, we get the form:

λk =
N

2
log σ̂2 − k

2
log σ̂2

1,k − N − k

2
log σ̂2

2,k, (5.3)

with the likelihood ratio

Λk =

(

σ̂N

σ̂k
1,kσ̂

N−k
2,k

)

. (5.4)

5.2 Variance equal and unknown

In the second scenario, the variances remain unknown but σ2
1 = σ2

2 = σ2
k. In this case we

have the following regression parameters under each hypothesis :

H0 : (α, β, σ2) Ha : (α1, β1, σ
2), (α2, β2, σ

2).

We proceed by using the likelihood ratio in (5.1) to define the test. First, we make the
comment that the likelihood function for this scenario under H0 will be the same as (5.2),
no calculations are needed to derive the likelihood function under H0.

Under the alternative, again assuming k∗ = k, we have the likelihood function

Lk(y) =

k
∏

i=1

1√
2πσ2

e−
1

2σ2
(yi−α1xi−β1)2

N
∏

i=k+1

1√
2πσ2

e−
1

2σ2
(yi−α2xi−β2)2

which becomes

Lk(y) =

(

1

2πσ2

)N/2

exp

[

− 1

2σ2

(

k
∑

i=1

(yi − α1xi − β1)
2 +

N
∑

i=k+1

(yi − α2xi − β2)
2

)]

after some simplification. The log-likelihood function is given as

ℓk(y) = −N

2
log 2π − N

2
log σ2 − 1

2σ2

(

k
∑

i=1

(yi − α1xi − β1)
2 +

N
∑

i=k+1

(yi − α2xi − β2)
2

)

.

25



To find the maximum likelihood estimates, we begin by taking the partial derivatives with
respect to (α1, β1, α2, β2, σ

2) and solving for zero. The partial derivatives are defined as

∂ℓk

∂α1
= − 1

2σ2

k
∑

i=1

2(yi − α1xi − β1)(−xi)

∂ℓk

∂β1
= − 1

2σ2

k
∑

i=1

2(yi − α1xi − β1)(−1)

∂ℓk

∂α2
= − 1

2σ2

N
∑

i=k+1

2(yi − α2xi − β2)(−xi)

∂ℓk

∂β2
= − 1

2σ2

N
∑

i=k+1

2(yi − α2xi − β2)(−1)

∂ℓk

∂σ2
= − N

2σ2
+

1

2σ4

(

k
∑

i=1

(yi − α1xi − β1)
2 +

N
∑

i=k+1

(yi − α2xi − β2)
2

)

.

We note that the expressions for ∂ℓk

∂α1
, ∂ℓk

∂β1
, ∂ℓk

∂α2
and ∂ℓk

∂β2
are all similar to the ones developed

in the previous section and independent of σ2
k. We note here that the maximum likelihood

estimates are

α̂1,k =

k

k
∑

i=1

(yixi) −
k
∑

i=1

yi

k
∑

i=1

xi

k

k
∑

i=1

x2
i −

(

k
∑

i=1

xi

)2 ,

β̂1,k =
1

k

k
∑

i=1

(yi − α̂1,kxi),

α̂2,k =

(N − k)

N
∑

i=k+1

(yixi) −
N
∑

i=k+1

yi

N
∑

i=k+1

xi

(N − k)
N
∑

i=k+1

x2
i −

(

N
∑

i=k+1

xi

)2

and

β̂2,k =
1

N − k

N
∑

i=k+1

(yi − α̂2,kxi).
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To calculate the maximum likelihood estimate for σ2, we solve

− N

2σ2
+

1

2σ4

(

k
∑

i=1

(yi − α1xi − β1)
2 +

N
∑

i=k+1

(yi − α2xi − β2)
2

)

= 0.

Then the maximum likelihood estimate σ̂2
k is given as

σ̂2
k =

1

N

(

k
∑

i=1

(yi − α̂1,kxi − β̂1,k)
2 +

N
∑

i=k+1

(yi − α̂2,kxi − β̂2,k)
2

)

.

When the maximum likelihood estimates are substituted into ℓk, we get the following
expression

ℓk(y) = −N

2
log 2π − N

2
log σ̂2

k −
N

2
.

We then calculate the value of the log-likelihood ratio

λk(y) = ℓk(y) − ℓ(y),

which is given as

λk(y) = −N

2
log 2π − N

2
log σ̂2

k − N

2
− (−N

2
log 2π − N

2
log σ̂2 − N

2
)

and can be simplified to give the expression

λk(y) =
N

2
log σ̂2 − N

2
log σ̂2

k. (5.5)

And the likelihood ratio can be written

Λk =

(

σ̂2

σ̂2
k

)N/2

. (5.6)

5.3 Variances equal and known

If σ2 is known, we have the following parameters under the null and alternative

H0 : (α, β) Ha : (α1, β1), (α2, β2).

Under H0, the likelihood function is given as

L(y;α, β) =

N
∏

i=1

1√
2πσ2

e−
1

2σ2
(yi−αxi−β)2

and can be rewritten in the form

L(y;α, β) =

(

1

2πσ2

)N/2

exp

(

− 1

2σ2

N
∑

i=1

(yi − αxi − β)2

)

.
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To find the maximum, we will use the log-likelihood which is given as

ℓ(y;α, β) = −N

2
log 2πσ2 − 1

2σ2

N
∑

i=1

(yi − αxi − β)2.

The maximum is achieved when the partial derivatives are equal to zero. We solve the
following equations to find the maximum :

∂ℓ

∂α
= − 1

2σ2

N
∑

i=1

2(yi − αxi − β)(−xi) = 0,

∂ℓ

∂β
= − 1

2σ2

N
∑

i=1

2(yi − αxi − β)(−1) = 0.

Then the maximum likelihood estimate for α is given by solving the equation

1

σ2

N
∑

i=1

(yixi − αx2
i − βxi) = 0

for α. Taking the term involving α to the other side, we get

α

N
∑

i=1

x2
i

σ2
=

1

σ2

N
∑

i=1

(yixi − βxi).

Then the maximum likelihood estimate α̂ is

α̂ =

N
∑

i=1

xi(yi − β̂)

N
∑

i=1

x2
i

. (5.7)

Next, we find the maximum over β by solving the equation

1

σ2

N
∑

i=1

(yi − αxi − β) = 0.

Isolating the β terms, we get

Nβ

σ2
=

1

σ2

N
∑

i=1

(yi − αxi).

And, finally, the maximum is achieved at

β̂ =
1

N

N
∑

i=1

(yi − α̂xi). (5.8)
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Then the maximum of the log-likelihood function under H0 is given by

ℓ(y; α̂, β̂) = −N

2
log 2πσ2 − 1

2σ2

N
∑

i=1

(yi − α̂xi − β̂)2,

where α̂ and β̂ are given by (5.7) and (5.8).
Under the alternative, there is one shift in regime. If the location of the shift is at some

known time k, then the likelihood function is given as

Lk(y) =

k
∏

i=1

1√
2πσ2

e−
1

2σ2
(yi−α1xi−β1)2

N
∏

i=k+1

1√
2πσ2

e−
1

2σ2
(yi−α2xi−β2)2 .

With the log-likelihood function

ℓk(y) = −N

2
log 2πσ2 − 1

2σ2

k
∑

i=1

(yi − α1xi − β1)
2 − 1

2σ2

N
∑

i=k+1

(yi − α2xi − β2)
2.

To find the maximum, we solve the partial derivatives for zero

∂ℓk

∂α1
= − 1

2σ2

k
∑

i=1

2(yi − α1xi − β1)(−xi) = 0,

∂ℓk

∂β1
= − 1

2σ2

k
∑

i=1

2(yi − α1xi − β1)(−1) = 0,

∂ℓk

∂α2
= − 2

2σ2

N
∑

i=k+1

2(yi − α2xi − β2)(−xi) = 0,

∂ℓk

∂β2
= − 2

2σ2

N
∑

i=k+1

2(yi − α2xi − β2)(−2) = 0.

Next, we find the maximum likelihood estimates for α1 and β1. The maximum likelihood
estimate for α1 is calculated by solving the equation

1

σ2

k
∑

i=1

(yi − α1xi − β1)(xi) = 0.

The solution to this equation has been derived in previous sections and is

α̂1,k =

k
∑

i=1

xi(yi − β̂1)

k
∑

i=1

x2
i

.
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Similarly, the expression for α̂2,k can be written as

α̂2,k =

N
∑

i=k+1

xi(yi − β̂2)

N
∑

i=k+1

x2
i

.

To find the maximum likelihood estimate for β1, we solve

1

σ2

k
∑

i=1

(yi − α1xi − β1) = 0.

Again, from the previous sections we have

β̂1,k =
1

k

k
∑

i=1

(yi − α̂1,kxi)

and

β̂2,k =
1

N − k

N
∑

i=k+1

(yi − α̂1,kxi).

Then the maximum of the log-likelihood ratio under the alternative can be written

ℓk(y) = −N

2
log 2πσ2 − 1

2σ2

k
∑

i=1

(yi − α̂1,kxi − β̂1,k)
2 − 1

2σ2

N
∑

i=k+1

(yi − α̂2,kxi − β̂2,k)
2.

The generalized log-likelihood ratio for our test is

λk = log Λk = ℓk(y) − ℓ(y).

Substituting the expressions for ℓk and ℓ, we get

λk = −N

2
log 2πσ2 − 1

2σ2

k
∑

i=1

(yi − α̂1,kxi − β̂1,k)
2 − 1

2σ2

N
∑

i=k+1

(yi − α̂2,kxi − β̂2,k)
2

−
(

−N

2
log 2πσ2 − 1

2σ2

N
∑

i=1

(yi − α̂xi − β̂)2

)

.

So that the generalized log-likelihood is

λk =
1

2σ2

(

N
∑

i=1

(yi − α̂xi − β̂)2 −
k
∑

i=1

(yi − α̂1,kxi − β̂1,k)
2 −

N
∑

i=k+1

(yi − α̂2,kxi − β̂2,k)
2

)

.
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5.4 Results

We are interested in whether or not a regime shift occurs for the average credits at gradu-
ation. Table 1 shows the values under consideration. To be more specific, the yi will come
from the means column of Table 1 and the xi are the years associated with each average.
Figure 8 shows the log-likelihood values for each k between 1997 and 2005 and under each
of the three scenarios developed previously1. All three show that, if the value for ℓ2001 is
large, there was a regime shift in the year 2001.

5.4.1 Critical Values

When we assume that the split point k is unknown, the critical values cannot be assumed
to come from the χ2 distribution. Critical values for these tests will be derived using a
resampling method. In this method, we will use the model

yi = β + αxi + εi, 1 ≤ i ≤ 10,

where the εi will be independent normally distributed random numbers with mean 0 and
variance σ2 = 0.04. Then, we calculate {λk : 2 ≤ k ≤ 8}. Under the three scenarios
discussed in sections 5.1 through 5.3. This process is repeated n times, which we denote

ϕj = max
2≤k≤8

λk, 1 ≤ j ≤ n.

The ϕj are then ordered, according to each of the three scenarios, and the critical values
for the test are given as ϕ(1−α)n. In our case we take n = 1000.

α = 0.10 α = 0.05

Variance Unequal and Unknown 11.596 14.052

Variance Equal and Unknown 8.011 9.174

Variance Equal and Known 12.886 14.468

Table 7: Critical Values for Regime Change Test

The critical values can be found in Table 7. Figure 9 shows log-likelihood plots in each
of the three scenarios with critical values. Critical values for α = 0.10 are in red, and values
for α = 0.05 are in blue. We see that only in the case where the variances are unknown and
unequal do we reject for α = 0.10. This indicates that, under most circumstances, only one
model is necessary to summarize the rise in credits to graduation. We note here that the
scenario where variances are unequal and unknown is the more realistic of the three. It has
been shown previously that we can assume either an exponential or gamma distribution
and that the scale parameter is not staying constant over the time period considered. This
means that the variance is also assumed to be changing over that same time period.

Notice that the observed values in Figure 7 for 2002 through 2006 fall nearly along the
same line, whereas the values from 1997 through 2001 are not rising as steadily. This seems

1We note that in the third scenario where the variances are equal and known, σ
2 = 0.04. This value was

taken from the variance of the original samples divided by ni, or the number of students in each year.
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Figure 8: Log-likelihood Values
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to indicate that the regime change test should have concluded that two regression lines are
necessary. To investigate further, we will assume two different scenarios and compare the
R2 value for each. In each scenario, we use the normal regression model

Y = Xβ + ε.

In the first scenario, we assume that one model appropriately describes the trend, so that
we have the following definitions for Y and X

Y =

































22.119
21.828
22.465
22.359
23.009
22.985
23.533
24.009
24.544
25.148

































and

X =

































1997 1
1998 1
1999 1
2000 1
2001 1
2002 1
2003 1
2004 1
2005 1
2006 1

































.

In the second scenario, we assume that there are actually two models for the data. We
keep the same definition for Y and take

X =

































1997 1 0 0
1998 1 0 0
1999 1 0 0
2000 1 0 0
2001 1 0 0
0 0 2002 1
0 0 2003 1
0 0 2004 1
0 0 2005 1
0 0 2006 1

































.
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Using least squares regression, we get

β′ = (0.348,−674.207) (5.9)

with R2 = 0.9319 for the first scenario and

β′ = (0.231,−439.683, 0.533,−1045.667) (5.10)

with R2 = 1 for the second. We would say that the second scenario of two models results in
a better fit judging from the increase in R2. The regime change test may not agree because
it does not recognize the small difference in R2 as being significant. The results from
performing regression under both assumptions show that the average number of credits
students are graduating with is increasing between 0.348 (5.9) and 0.533 (5.10) starting in
2001. While this shows a rise in credits at graduation, it is not an incredibly large increase
from year to year. At worst, it shows that after 2001 students will take an extra three credit
course every six years. It is also unclear whether or not this trend will continue forever.

Figure 10 shows the observed average excess credits from 1997 through 2006 along with
predicted values using one model and two models. These prediction lines show that by
2010 students should be taking between 25 and 27 extra credits on average. This equates
to roughly two extra semesters (or one academic year) for the average student. It should
be noted that we make no assumptions about how many terms it will take students to
graduate. We assume that, due to lifestyle differences, terms to graduation and credits to
graduation can be considered independent.

5.5 Conclusions and further research

The main conclusion of this project is that students are indeed taking an increasing number
of credits to graduate; but that the increase is not very large. Further research could be
performed to determine the cause of the increase. Information may or may not be available
to determine the cause. For example, economic factors may be the cause for the increase. It
is widely known that when the economy is not performing well students continue to attend
college trying to wait out the downturn, this information is not easily obtained. There is
also an indication that students are working more while studying. This fact might force
students to take longer to graduate and possibly to change majors more, forcing students to
take more credits. However, the institution does not have data on how much or how often
students work making this a hard variable to study. There are also indications that colleges
have a strong effect on average credits to graduation. A small change in a department or
college’s curriculum could affect the average credits to graduation for the institution. Also,
shifts in student population from one college or department to another could affect the
change in average credits at graduation. The number of double/multiple majors and the
number of students working on combined BS/MS degrees should also be investigated as
a reason for the increase. It is our conclusion that although credits at graduation are
increasing, the explanation for the increase is complicated and merits further research.
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Figure 10: Predicted Values for Excess Credits
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A Code Written for Data Extraction and Analysis

This section includes most of the code written for this project. Generally, Perl was used
for data extraction from the MySQL databases maintained by the Office of Budget and
Analysis. Some of the data cleaning was done in the Perl scripts as the data came out of
the databases. All of the data analysis and some of the data cleaning was done in R. Some
of the more mundane code was left out, for example, code creating most of the plots and
the code for performing the tests for each year.

A.1 Data extraction and cleaning

This package was written to make the job of extraction easier. Moving these functions into
a package made the extraction cleaner.

package MastersTools;

sub getSemTables {
my ($startyear,$endyear) = @ ;

my $dbh = DbTools::connectDb(@DbTools::sherman,"obia prod");

my $tables sql = DbTools::getDbHandle($dbh,"show tables");

$tables sql->execute();

my %tables = ();

while( my $t = $tables sql->fetchrow array() ){
if( index($t,’dem’) > -1 ){

$tables{$t} = 1;

}
}

#figure out tables to use and create the rest of the select

# and join statements.

my $num sem = 4*(1998 - $startyear);

$num sem += 3*($endyear - 1998);

if( $startyear > 1998 ){
$num sem = 3*($endyear - $startyear);

}
if( $endyear <= 1998 ){

$num sem = 4*(1998 - $startyear);

}

my @terms = (’W’,’S’,’U’,’F’);

my @semesters = (’S’,’U’,’F’);

my $thisyr = $startyear;

my @tbls = ();

for(my $i = $startyear;$i <= $endyear;$i++){
if($i == $startyear){
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push @tbls,’F’ . substr($i,2,2);

}elsif($i == $endyear){
push @tbls,’S’ . substr($i,2,2);

}elsif($i <= 1998){
for(my $j=0;$j < 4;$j++){

push @tbls,$terms[$j] . substr($i,2,2);

}
}else{

for(my $j=0;$j < 3;$j++){
push @tbls,$semesters[$j] . substr($i,2,2);

}
}

}
push @tbls,’U’ . substr($endyear,2,2);

my @results = ();

foreach my $i (@tbls){
my $extract = ’E’;

if( ! defined( $tables{’dem’.$i.$extract}) ){
$extract = ’C’;

}
push @results, ’dem’ . $i . $extract;

}

return @results;

}
sub getDegTables {

my ($startyear,$endyear) = @ ;

my @results = ();

for(my $i=$startyear;$i<$endyear;$i++){
my $nxtyr = $i+1;

push @results,’deg’ . substr($i,2,2) . substr($nxtyr,2,2);

}

return @results;

}
return 1;

The following code does the bulk of the data extraction and cleaning. Usernames and passwords
are located in another package that has not been included here for security.

#!/usr/bin/perl -w

use strict;

use DBI;

use lib qw(/home/jmorris/Documents/scripts/);

use lib qw(/home/jmorris/MastersProject/scripts/);

use tools;
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use mtools;

my $dbh = DbTools::connectDb(@DbTools::sherman,"obia prod");

my @degreeTbls = MastersTools::getDegTables(1993,2006);

open OUT,">../data/credits.csv";

print OUT "year,degree,terms,total credits,transfer credits\n";

foreach my $i (@degreeTbls){
my $yr = substr($i,5,2) + 1900;

if( $yr < 1930 ){
$yr += 100;

}
my $mincredits = 122;

my $crfactor = 1;

my $tr = 0;

if( $yr < 1999 ){
$mincredits = $mincredits * 3 / 2;

$crfactor = 2/3;

$tr = 1;

}
my $query = "select ‘DEGREE TYPE‘,NBRTERMSATTENDED,TOTCUM,

TOTTRANSFER,TOTTEST,TOTOTHER from $i ";

$query .= "where TOTCUM+$tr >= $mincredits";

my $data sql = DbTools::getDbHandle($dbh,$query);

$data sql->execute();

my $nstudents = 0;

while(( my ($degree,$terms,$credits,$transfer,$test,$other) = $data sql->fetchrow array() )){
if( $tr == 1 ){

if( defined($transfer) ){
$credits += $transfer;

}
if( defined($test) ){

$credits += $test;

}
if( defined($other) ){

$credits += $other;

}
}
if( $credits >= $mincredits ){

$credits -= $mincredits;

}
$credits *= $crfactor;

$terms *= $crfactor;

if(($credits >= 0)&&(( substr($degree,0,1) eq ’B’ )||( substr($degree,0,1) eq ’H’ ))){
print OUT "$yr,$degree,$terms,$credits";

if( defined($transfer) ){
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print OUT ",$transfer\n";
}else{

print OUT ",\n";
}
$nstudents++;

}
}

}

close OUT;

This code was written in R and takes care of the last part of the data cleaning.

#here we define who gets to stay in the data set and who doesn’t

tmp <- data.frame(all grads,keep=0)

acad.level <- c(’01’,’02’,’03’,’04’,’05’)

for( i in 9:11 ){
for( j in seq(along=acad.level) ){

tmp$keep[ tmp[,i] == acad.level[j] ] <- 1

}
}

yrs <- c(1997:2006)

for( i in seq(along=yrs) ){
fac <- 1

if( yrs[i] < 1999 ){
fac <- 3/2

}
tmp$keep[ tmp$year == yrs[i] & tmp$total credit < 120*fac ] <- 0

tmp$total credit[ tmp$year == yrs[i] ] <- (1/fac) * (tmp$total credit[ tmp$year == yrs[i] ]

- (120*fac))

tmp$terms[ tmp$year == yrs[i] ] <- (1/fac) * tmp$terms[ tmp$year == yrs[i] ]

}

tmp <- tmp[ tmp$keep == 1, ]

final.all grads <- data.frame(tmp[, c(1:8)])

A.2 Testing the Exponential Assumption

Code written in R testing data for exponentiality.

exp.chisq <- function(x,...){
n <- length(x)

h <- hist(x,plot=FALSE,...)

b <- h$breaks[-1]
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K <-length(b)

prob <- numeric(K)

theta <- mean(x)

prob[1] <- pexp(b[1],1/theta)

for( i in 2:K ){
prob[i] <- pexp(b[i],1/theta) - pexp(b[i-1],1/theta)

}
prob[K] <- pexp(b[K-1],1/theta,FALSE)

prob[ is.na(prob) ] <- 0

Q <- sum( ((h$counts - n*prob)^2 / n*prob) )

list(counts=h$counts,p=prob,breaks=b,Q=Q,df=(K-2),

p.value=pchisq(Q,df=(K-2),lower.tail=FALSE))

}

exp.unif <- function(x,mn=mean(x),shift=0){
x.s <- as.numeric(levels(factor(x))) #removes all duplicates

n <- length(x.s)

Sn <- sum(x.s)

ks <- numeric(n-1)

cvm <- 0

for( k in 1:(n-1) ){
Sk <- sum(x.s[1:k])

tmp <- (Sk / Sn) - (k/n)

ks[k] <- abs(tmp)

cvm <- cvm + tmp^2

}

F <- ecdf(x)

D <- abs( pexp(x - shift,rate=1/(mn - shift)) - F(x) )

CM <- 1/(12*n) + sum( (pexp(x.s - shift,rate=1/mean(x.s - shift)) - (1:n - 0.5)/n )^2 )

list(ks=(sqrt(n)*max(ks)),cvm=cvm,D=max(D),CM=((1 + 0.16/n)*CM),n=n)

}

ttot <- function(x) {
X <- as.numeric(levels(factor(x))) #removes all duplicates

n <- length(X)

T <- numeric(n - 1)

denom <- 0

for( i in 1:(n-1) ){
denom <- denom + (n - i - 1)*(X[i+1] - X[i])

}

s <- 0
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for( i in 1:(n-1) ){
s <- s + (n - i - 1)*(X[i+1] - X[i])

T[i] <- s / denom

}

br1 <- sqrt(n) * max( abs(T - (1:(n-1))/n) )

br2 <- sum( (T - (1:(n-1))/n)^2 )

list(t1=br1,t2=br2)

}

Code written in R to plot the empirical density function against the density function for the
Gamma distribution.

y <- data.frame( matrix(0,ncol=3,nrow=11) )

names(y) <- c(’M’,’kappa’,’theta’)

row.names(y) <- c(1997:2006,’All’)

x11(w=9,h=9)

par(mfrow=c(2,2))

for( i in 1:4 ){
x <- sort(total credit[ year == i + 1996 ]) + 1

x.den <- density(x,from=1)

s <- log(mean(x)) - (1/length(x))*sum( log(x) )

cat(s,’\n’)
k <- (0.5000876 + 0.1648852*s - 0.0544274*s^2) / s

th <- mean(x) / k

y[i,] <- c(s,k,th)

plot(x.den,type=’l’,col=’red’,lwd=1,main=(i + 1996),xlab=’Excess Credits’,

ylab=expression(f[0](x)))

points( x,dgamma(x,shape=k,scale=th),type=’l’,lwd=2,lty=1,col=’blue’)

}
dev.copy2eps(device=’x11’,file=’../writeup/gamma1.eps’,horizontal=FALSE)

dev.off()

x11(w=8,h=10)

par(mfrow=c(3,2))

for( i in 5:10 ){
x <- sort(total credit[ year == i + 1996 ]) + 1

x.den <- density(x,from=1)

s <- log(mean(x)) - (1/length(x))*sum( log(x) )

cat(s,’\n’)
k <- (0.5000876 + 0.1648852*s - 0.0544274*s^2) / s

th <- mean(x) / k
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y[i,] <- c(s,k,th)

plot(x.den,type=’l’,col=’red’,lwd=1,main=(i + 1996),xlab=’Excess Credits’,

ylab=expression(f[0](x)))

points( x,dgamma(x,shape=k,scale=th),type=’l’,lwd=2,lty=1,col=’blue’)

}
dev.copy2eps(device=’x11’,file=’../writeup/gamma2.eps’,horizontal=FALSE)

dev.off()

x11(w=9,h=9)

x <- sort(total credit) + 1

x.den <- density(x,from=1)

s <- log(mean(x)) - (1/length(x))*sum( log(x) )

cat(s,’\n’)
k <- (0.5000876 + 0.1648852*s - 0.0544274*s^2) / s

th <- mean(x) / k

y[11,] <- c(s,k,th)

plot(x.den,type=’l’,col=’red’,lwd=1,main=’1997 - 2006’,xlab=’Excess Credits’,

ylab=expression(f[0](x)))

points( x,dgamma(x,shape=k,scale=th) , type=’l’,lwd=2,lty=1,col=’blue’)

dev.copy2eps(device=’x11’,file=’../writeup/gamma3.eps’,horizontal=FALSE)

dev.off()

A.3 Testing for Homogeneity of the Mean

Code written in R.

theta.hat <- function(x,index,sub=c(1997:2006),...){
mns <- numeric(length(sub))

for( i in seq(along=sub) ){
mns[i] <- mean( x[ index == sub[i] ],... )

}
ret <- mean(mns)

return( ret )

}

loglke.2 <- function(x,index,sub=c(1997:2006)){
tot.mean <- theta.hat(x,index,sub)

n <- numeric(length(sub))

ss <- numeric(length(sub))

for( i in seq(along=sub) ){
ss[i] <- ((theta.hat(x,index,sub[i]) - tot.mean)/tot.mean )^2

n[i] <- length( x[ index == sub[i] ] )

}
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sum( n*ss )

}

loglke <- function(x,index){
grps <- factor(index)

k <- length(levels(grps))

mns <- sapply(split(x,grps),mean)

lns <- sapply(split(x,grps),length)

mn <- mean(x)

null <- sum(dexp(x,rate=mn,log=T))

alt <- numeric(k)

for( i in 1:k ){
cat(x[index == levels(grps)[i]],’\n’)
alt[i] <- sum(dexp(x[index == levels(grps)[i]],rate=mns[i],log=T))

}

cat(null,’\n’,alt,’\n’)
a <- null - sum(alt)

alt <- 0

for( i in seq(along=levels(grps)) ){
alt <- alt + lns[i]*log(mns[i])

}
null <- length(x)*log(mn)

b <- null - alt

list(a=a,b=b)

}

get.pvalue <- function(x,index,sub=c(1997:2006),...){
ll <- loglke(x,index,sub,...)

p.value <- pchisq(-2*ll,length(sub)-1,lower.tail=F)

list(ll=ll,p.value=p.value)

}
get.pvalue.approx <- function(x,index,sub=c(1997:2006)){

ll <- loglke.2(x,index,sub)

pchisq(ll,length(sub)-1,lower.tail=F)

}

A.4 Regime Change Functions

Code written in R.

regime.likelihood <- function(x,y,f=NULL,v=0.4) {
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N <- length(x)

idx <- x

if( ! is.null(f) ){
N <- length(f)

idx <- f

}

RSS1 <- numeric(N)

RSS2 <- numeric(N)

L <- numeric(N)

RSSp <- numeric(N)

Lp <- numeric(N)

L.kn <- numeric(N)

RSS <- sum(lm(y x)$residuals^2)

for( k in 2:(N-1) ){
RSS1[k] <- sum(lm(y x,subset=(x <= idx[k]))$residuals^2)

RSS2[k] <- sum(lm(y x,subset=(x > idx[k]))$residuals^2)

RSSp[k] <- (RSS1[k] + RSS2[k])

L[k] <- (N/2)*log(RSS/N) - (k/2)*log(RSS1[k]/k) - ((N-k)/2)*log(RSS2[k]/(N-k))

Lp[k] <- (N/2)*(log(RSS/N) - log(RSSp[k]/N))

L.kn[k] <- (1/(2*v))*( RSS - RSS1[k] - RSS2[k])

}

list(RSS=RSS,RSS1=RSS1[c(-1,-N)],RSS2=RSS2[c(-1,-N)],

RSSp=RSSp[c(-1,-N)],L=L[c(-1,-N)],Lp=Lp[c(-1,-N)],

L.kn=L.kn[c(-1,-N)])

}

regime.critical <- function(x,y,N=500,er.var=0.4,...){
cr <- data.frame(L=numeric(N),Lp=numeric(N),L.kn=numeric(N))

n <- length(x)

for(i in 1:N ){
errors <- rnorm(n,mean=0,sd=sqrt(er.var))

y. <- y + errors

tmp <- regime.likelihood(x,y.,...)

cr$L[i] <- max(tmp$L[tmp$L < Inf])

cr$Lp[i] <- max(tmp$Lp)

cr$L.kn[i] <- max(tmp$L.kn)

}

cr <- apply(cr,2,sort)

list(a90=cr[N*0.9,],a95=cr[N*0.95,])

}
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