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In order to demonstrate that the code is working, I have created the plots in Figure

1. The plots show what happens for different choices of βn for the Traveling Salesman

problem with 4 cities. The code is written to handle the general case and even allows for

non-symmetric distance matrices.

The distance matrix is defined using exponential random numbers with mean 700, that

are then converted to integers. This turns out to make it easier to determine if the true

minimum has been reached.

The graphs show how many times a certain path was chosen. We are supposed to

see the uniform distribution on the set of minimizers, in this case the paths of minimum

distance.

There are two main difficulties. The first is how to choose ε and n. The second is the

time it takes to generate the graphs in order to tell if the method is working or not. In the

graphs that have been displayed, the values are chosen as ε = 0.01, n = 10, 000. This could

take up to one hour, just for the 4 city case. The values for ε and n have been chosen using

trial and error. If we were to increase the number of cities to 10, for example, the time it

would take to see if it worked would be very high. This appears to be the main downfall of

solving the Traveling Salesman problem this way. There is no theoretical way of knowing

how to chose the values of ε and n to make it practical for a large number of cities. It is

actually quicker and more accurate to use the computer to compute the answer explicitly.

Another difficulty here is that with only 4 cities, there are really no local minima like

there would be with a larger number, say 10 or more, so we cannot really check if in the

case where βn = εn, the method gets stuck in those local minima.
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Figure 1: Graphs for 4 city Traveling Salesman

# Simulated Annealing for Traveling Salesman

pathPermutations <- function(sigma){
l <- length(sigma)

num <- choose(l,2) + 1

r <- matrix(0,nrow=num,ncol=l)

c <- 1

for( i in 1:(l-1) ){
for( j in (i+1):l ){

r[c,] <- sigma

r[c,i] <- sigma[j]

r[c,j] <- sigma[i]

c <- c + 1

}
}
r[c,] <- sigma

return(r)

}
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H <- function(path,D){
l <- length(path)

d <- D[path[l],path[1]]

for( i in 2:(l) ){
d <- d + D[path[i-1],path[i]]

}
return(d)

}

allPn <- function(s){
library(combinat)

l <- length(s)

n <- factorial(l)

t(matrix(unlist(permn(sort(s))),ncol=n,nrow=l))

}

pi.term <- function(h.i,h.j,beta){
r <- exp( -beta * (h.j - h.i) )

if( h.j - h.i == 0 ){
r <- 1

}
return(r)

}

nextPath <- function(original,beta,D){
l <- length(original)

n <- factorial(l)

paths <- pathPermutations(original)

lpt <- choose(l,2) + 1

p <- numeric(lpt)

this <- lpt

c <- 1

for( i in 1:(lpt-1) ){
pi i <- sDist(beta,paths[this,],D)

pi j <- sDist(beta,paths[i,],D)

ratio <- pi.term(H(paths[this,],D),H(paths[i,],D),beta)

p[i] <- 1 / lpt

if( ratio < 1 ){
p[i] <- (1/lpt) * ratio

}

}
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p[this] <- 1 - sum(p)

ranU <- runif(1)

c <- 1

rtotal <- p[1]

while( rtotal < ranU ){
c <- c + 1

rtotal <- rtotal + p[c]

}

return(paths[c,])

}
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