Jeremy Morris
Math 6070 Midterm (deadline: 23 April)

1. Let Uy,..., Uy be independent identically distributed random variables, uniform on [0,1]. Let Uy, <
Uz <+ < Uy, denote the order statistics. Let k,, satisfy

ky, — o0 and kp/n —p € (0,1) (n — o0).

Show that there are a,,b, such that
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and the Y; are indpendent identically distributed exponential random variables with parameter 1. I
will show that
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Then we can do some algebraic manipulation so that (1) can be rewritten
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which becomes
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The first term in this statement converges in probability to one since

ESn-H =n+ 1
Then, by application of Slutsky’s theorem, we need to show that the remaining term converges in
distribution to the normal distribution. The remaining term is

1 1k,

\/H(Skn —kn) — %n—ﬂ(snﬂ —(n+1)) (2)



where Sk, and 5,11 are not independent. In order to create a sum of independent random variables,
we rewrite (2) so that we have
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which can be rewritten
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Then Si, and (Sp4+1 — Sk, ) are independent so that
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where N; and N; are independent standard normal random variables. Then as n — oo, (3) becomes

VN1 = p|VBN1 + /T = pNe |,

which is a linear combination of independent normal random variables with mean 0 and variance
p(1 — p). This shows that

(anUp,n — bn) % N(0,1).
where a, = v/n and b, = /nk,/(n +1).



