Midterm 2 28 March 2007, 2:15

1. Find conditions on $f(\mathbf{x}, \theta)$ such that

$$I(\theta) = -E\left(\frac{\partial^2}{\partial\theta^2}\log f(\mathbf{x},\theta)\right)$$

holds.

2. Let f and g be two densities. Show that

$$\int_{-\infty}^{\infty} f(x) \log f(x) dx \ge \int_{-\infty}^{\infty} f(x) \log g(x) dx,$$

assuming that both integrals exist. When do we have equality?

- 3. Let X_1, X_2, \ldots, X_n be i.i.d.r.v.'s, uniform on $[0, \theta]$ $(\theta > 0)$.
 - (a) Find the maximum likelihood estimator for θ .
 - (b) Get the asymptotic distribution of the maximum likelihood estimator.
- 4. Let X_1, X_2, \ldots, X_n be independent identically distributed random variables with $P\{X_1 = 1\} = p$ and $P\{X_1 = 0\} = 1 p$. We wish to test H_0 : $p = p_0$ against H_A : $p \neq p_0$. Use the likelihood ratio test and get its asymptotic distribution directly.
- 5. Let X_1, X_2, \ldots, X_n be independent identically distributed random variables uniform on $[0, \theta]$. We wish to test $H_0: \theta = \theta_0$ against $H_A: \theta \neq \theta_0$. Use the likelihood ratio test and get its asymptotic distribution.
- 6. X_1, X_2, \ldots, X_n be independent identically distributed $N(\mu, \sigma^2)$ random variables. We wish to test $H_0: \mu = \mu_0$ against the alternative that $H_A: \mu \neq \mu_0$. Show that the t-test and the likelihood ratio test are equivalent.
- 7. X_1, X_2, \ldots, X_n be independent identically distributed $N(\mu, \sigma^2)$ random variables. We wish to test $H_0: \mu \leq \mu_0$ against the alternative $H_A: \mu > \mu_0$. Find a test using the likelihood ratio.

- 8. X_1, X_2, \ldots, X_n be independent random variables. We assume that X_i is an exponential $(\theta_i$ random variable. We wish to test $\theta_1 = \theta_2 = \ldots = \theta_n$ against the alternative that the null is not true.
 - (a) Find a test using the likelihood ratio.
 - (b) Find the asymptotic distribution of the likelihood ratio test.
- 9. Let X_1, X_2, \ldots, X_n be independent identically distributed $N(\mu_1, \sigma^2)$ random variables. Let Y_1, Y_2, \ldots, Y_n be independent identically distributed $N(\mu_2, \sigma^2)$. We wish to test H_0 : $\mu_1 = \mu_2$ against the alternative H_A : $\mu_1 \neq \mu_2$. Show that the likelihood ratio test is equivalent with the two sample t-test.
- 10. Let X_1, X_2, \ldots, X_n be independent identically distributed $N(\mu_1, \sigma_1^2)$ random variables. Let Y_1, Y_2, \ldots, Y_n be independent identically distributed $N(\mu_2, \sigma_2^2)$. We wish to test $H_0: \mu_1 = \mu_2$ against the alternative $H_A: \mu_1 \neq \mu_2$. Find a test using the generalized likelihood.
- 11. We wish to test the null hypothesis that $\theta = \theta_0$ against the alternative that the null is not true. We reject the null if

$$\frac{|\ell_n'(\theta_0)|}{\sqrt{-\ell_n''(\theta_0)}}$$
 is large.

Determine the asymptotic rejection region.

12. Let X_1, X_2, \ldots be independent identically distributed normal $N(\mu, \sigma^2)$ random variables. We wish to have an $1 - \alpha$ confidence interval for μ of length not greater than d. Use sequential method to achieve this goal.