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1 Generating bivariate normal data

Definition 2.2 from our text states that we can transform a sample from a standard
normal random variable (Z) into a multivariate random variable with the distribution
X ∼ Nm(µ,Σ) using the equation

X = AZ + µ (1)

The matrix A is defined as Σ = AA′ [2]. Theorems A.4.3 and A.3.3 in the text suggest
that, if Σ is positive definite, we use the spectral decomposition Σ = TΛT ′ and set
A = TΛ

1/2. It follows that we get the correct decomposition of Σ. The function mvrnorm

in the MASS library of R uses this method.

2 Kernel Density Estimators

The bivariate kernel density estimator with kernel K and bandwidth h is defined by

f(x) =
1

nh2

n∑

i=1

K

{
x − Xi

h

}
(2)

If we assume the data to be bivariate normal, the kernel function K(x) will be defined as

K(x) =
1

2π
exp

(
−1

2
x′x

)
(3)

The kernel density estimator can be calculated using the function bivden provided by
Everitt [4].

The parameter h is known as the bandwidth of the estimator. There is no closed form
solution for an optimal bandwidth, but there are some suggestions. Everitt’s function
bivden uses h = an−0.2, where a is some constant provided by the user. This choice for
h may not be optimal since it does not use any characteristics of the data set. Härdle
suggests that if we can assume the data to be normally distributed, Silverman’s rule of
thumb can be used to choose the bandwidth [1]. Silverman’s rule of thumb suggests taking
an estimate from the sample based on the sample variance so that we have the estimate

ĥrot =

(
4σ̂5

3n

)1/5

≈ 1.06σ̂n−1/5 (4)
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Härdel further notes that this definition of ĥrot is sensitive to outliers, so it is suggested to
modify the definition of ĥrot and take into account the 25% and 75% quantiles. Then if we
define

R = X[0.75n] − X[0.25n] (5)

where the Xi are normally distributed, we can use

ĥrot = 1.06
R

1.34
n−1/5 ≈ 0.79R̂n−1/5 (6)

The two estimates in 4 and 6 can be combined so that we have the final version of Silver-
man’s rule of thumb.

ĥrot = 1.06 min

{
σ̂,

R

1.34

}
n−1/5 (7)

The function kde2d in the MASS library of R uses the ĥrot by default, whereas the bivden

function assumes that the user will provide a constant. This small difference could change
the smoothness in the plots if the proper constant is not provided to bivden. For this
reason, the function kde2d will be used so that no unwieldy calculations have to be done.

Figure 1 shows contour plots for four different values of ρ. These values are ρ =
(0, 0.25, 0.75, 1). The plot shows that as the correlation between the data samples goes
up, the contour plots get more elongated along the line y = x. This makes sense because
a bivariate sample that is completely correlated will have the same observations in both
elements.

3 Testing for Multivariate Normality

Johnson and Wichern suggest that a good test for multivariate normality is to look at Q-Q
plots of the components of the sample [3]. This is done by plotting the sample quantiles
x(j) against the quantiles for the standard normal distribution q(j). Sample quantiles can
be thought of as the order statistics from the sample. Equation 8

P{Z ≤ q(j)} =

∫ q(j)

−∞

1√
2π

e−z2/2dz = p(j) =
j − 1

2

n
(8)

can be used to find the standard normal quantiles, q(j), by using p(j) as calculated from the
ordered observations. If the points (x(j), q(j)) are approximately linear, we can be fairly
certain that the observations do not violate the assumption of normality.

Figure 2 shows Normal Q-Q plot for two bivariate data sets, with the least squares line
plotted in red. The first sample, X, was generated using the method described in Section
1. The Q-Q plots show that this data is normally distributed. The second bivariate sample
Y was generated using R’s exponential random number generator. The Q-Q plots show
this data to be far from normality.

4 Visualizing Trivariate Data

Everitt suggests using a scatterplot matrix or conditioning plots to visualize trivariate data.
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Figure 1: Contour Plots of the Kernel Density Estimator

4.1 Scatterplot Matrix

A scatterplot matrix is a square matrix of bivariate plots for each pair of components in
the data set. In the case of trivariate data, six plots will be created. Everitt also suggests
placing least square lines and lowess lines in order to better visualize the relationships
between the different variables.

Figure 3 shows a scatterplot matrix for data on population, income level and murder
rates in all fifty states during the 1970’s. Also plotted are the least squares fit and lowess
fit for each plot. It is apparent that the scatterplot, in this case, does not fully capture the
relationships between the different variables in this data set.

4.2 Conditioning Plots

Conditioning plots, or coplots, can provide more information than scatterplots. To con-
struct a coplot for trivariate data, we need to specify a conditioning variable. We will use
the same data set as in the previous section and choose to condition on population. The
coplot function is used to display six bivariate scatterplots, for the variables representing
income level and murder rate, where the data are separated by population density.

In Figure 4 we can see the top panel which gives six bars representing the density of
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Figure 2: Q-Q plots to test for normality

the population variable. Then each bivariate plot, from left to right, starting in the bottom
row plots income level against murder rate for each of the six bars in the density plot.
The coplot gives a better picture of the relationship between murder rates and income
level. Notice that in all but one plot (bottom left) there appears to be a downward trend,
suggesting that as income level rises, murder rates decline. This relationship is not as clear
when looking at the scatterplot in Figure 3.

5 Application to a Bivariate Data Set

From the data in Section 4 we will look at a bivariate data set consisting of the income
levels and murder rates from the 1970’s states data.

Figure 5 shows Q-Q plots for both components of the data set. The income level
data appears to be approximately normal. Data for murder rates appears to be normally
distributed, but the fit is not great. This could be because the murder rates are integer
values, and are thus not normally distributed. A transformation could be used to improve
the normality of the data.

Figure 6 shows a contour plot for the kernel density estimator of this data. The contour
plots shows some interesting clusters of data. There is one large cluster around the income
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Figure 3: Scatterplot Matrix

levels of 4500-5000 suggesting that there is a low murder rate in middle income areas. There
is another smaller cluster in the income range of 3500-4000 suggesting high murder rates in
low income levels. There is another small cluster around the 6000+ income level suggesting
a high murder rate in a few upper income areas. These observations would suggest that
there may be at least one other factor that should be included in any analysis attempting
to explain murder rates.
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Figure 4: Conditioning Plot
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Figure 5: Testing for Normality
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Figure 6: Contour Plots of the Kernel Density Estimator
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