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4.2 Consider a bivariate normal population with µ1 = 0, µ2 = 2, σ11 = 2, σ22 = 1 and
ρ12 = .5.

(a) Write out the bivariate normal density.

The multivariate normal density is defined by the following equation.

f(x) =
1

(2π)p/2|Σ|1/2
e−

1

2
(x−µ)′Σ−1(x−µ)

With Σ =

(

σ11 σ12

σ12 σ22

)

and σ12 = ρ12
√

σ11
√

σ22. For this example, we have

the following definitions for Σ, and |Σ|.

Σ =

(

2
√

2
2√

2
2 1

)

|Σ| = (2)(1) − (
√

2/2)2 =
7

4

Σ
−1 =

4

7

(

1 −
√

2
2

−
√

2
2 2

)

To complete the definition of the density function we will derive the squared
generalized distance expression (x − µ)′Σ−1(x − µ).

(x − µ)′Σ−1(x − µ) =
(

x1 x2 − 2
)

(

4
7 −2

√
2

7

−2
√

2
7

8
7

)

(

x1

x2 − 2

)

(

x1 x2 − 2
)

(

4
7x1 − (x2 − 2)2

√
2

7

−2
√

2
7 x1 + (x2 − 2)8

7

)

1

7

(

x1 x2 − 2
)

(

4x1 − 2
√

2x2 + 4
√

2

−2
√

2x1 + 8x2 − 16

)

1

7
x1(4x1 − 2

√
2x2 + 4

√
2) +

1

7
(x2 − 2)(−2

√
2x1 + 8x2 − 16)

ϕ(x1, x2) =
1

7
(4x2

1 + 8
√

2x1 − 4
√

2x1x2 − 32x2 + 8x2
2 + 32) (1)
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Then the bivariate normal distribution function is defined as follows.

f(x1, x2) =
1√
7π

e−
1

2
ϕ(x1,x2)

(b) Write out the squared generalized distance expression (x − µ)′Σ−1(x − µ) as a
function of x1 and x2.

Derived in part (a) equation 1.

(c) Determine (and sketch) the constant-density contour that contains 50% of the
probability.

To determine the constant-density contour, we need to calculate the eigenvalues
and eigenvectors of Σ. This is done by solving for the roots of the equation
|Σ − λI|.

(2 − λ)(1 − λ) − 1/2 = 0

2 − 2λ − λ + λ2 − 1/2 = 0

λ2 − 3λ + 3/2 = 0

Using the quadratic equation, we get the eigenvalues

λ1 =
3 +

√
3

2

λ2 =
3 −

√
3

2

Then we find the eigenvector for λ1.

Σe1 − λ1e1 = 0

⇒ (2 − 3
2 −

√
3

2 )x1 +
√

2
2 x2 = 0

√
2

2 x1 + (2 − 3
2 −

√
3

2 )x1 = 0

⇒
(

1 −
√

3
√

2√
2 −1 −

√
3

)

e1 = 0

⇒ e1 =

(

−
√

2
1−

√
3

1

)

And the eigenvector for λ2.

Σe2 − λ2e2 = 0

⇒ (2 − 3
2 +

√
3

2 )x1 +
√

2
2 x2 = 0

√
2

2 x1 + (2 − 3
2 +

√
3

2 )x1 = 0

⇒
(

1 +
√

3
√

2√
2 −1 +

√
3

)

e1 = 0

⇒ e2 =

( √
2

1+
√

3

−1

)
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4.6 Let X be distributed as N3(µ,Σ), where µ = [1,−1, 2] and

Σ =





4 0 −1
0 5 0

−1 0 2





Which of the following random variables are independent? Explain.

(a) X1 and X2.

X1 and X2 are independent because cov(X1, X2) = cov(X2, X1) = 0.

(b) X1 and X3.

X1 and X3 are not independent because cov(X1, X3) = cov(X3, X1) = −1.

(c) X2 and X3.

X2 and X3 are independent because cov(X2, X3) = cov(X3, X2) = 0.

(d) (X1, X3) and X2.

To determine the answer, we need to rearrange the covariance matrix and par-
tition it. The new covariance matrix follows.

Σ =





4 −1 0
−1 2 0

0 0 5





We conclude that (X1, X3) and X2 are independent.

(e) X1 and X1 + 3X2 − 2X3.

We have the multivariate normal distribution

AX =

[

X1

X1 + 3X2 − 2X3

]

Where

A =

[

1 0 0
1 3 −2

]

X =





X1

X2

X3





And AX has the distribution N2(Aµ, AΣA′). Here we show the matrix AΣA′

to determine independence.

AΣA′ =

[

1 0 0
1 3 −2

]





4 0 −1
0 5 0

−1 0 2









1 1
0 3
0 −2





=

[

4 0 −1
6 15 −5

]





1 1
0 3
0 −2





=

[

4 6
6 61

]

And we conclude that (X1, X3) and X2 are not independent.
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4.9 Refer to Exercise 4.8, but modify the construction by replacing the break point 1 by
c so that

X2 =

{

−X1 if − c ≤ X1 ≤ c
X1 elsewhere

Show that c can be chosen so that Cov(X1, X2) = 0, but that the two random variables
are not independent.

First, we note (from exercise 4.8) that X1 ∼ N(0, 1). For c = 0, we have

Cov(X1, X2) = E[X1(X1)] − E[X1]E[X1]

= E[(X1)
2] = var(X1) + E[X1]

2

= 1

For c very large we have

Cov(X1, X2) = E[X1(−X1)] + E[X1]E[X1]

= −E[(X1)
2] = −(var(X1) + E[X1]

2)

= −1

Since the covariance is a smooth function of c, then by the mean value theorem,
Cov(X1, X2) = 0 at some point, but that the two random variables are not indepen-
dent.

4.10 Show each of the following.

(a)
A 0

0 B
= |A||B|

Factor
A 0

0 B
so that we have the following.

A 0

0 B
=

A 0

0
′ I

I 0

0
′ B

Then take the determinants to get

A 0

0
′ I

I 0

0
′ B

= (|AI| − |00
′|)(|IB| − |00

′|)

= |A||B|

(b)
A C

0
′ B

= |A||B| for |A| 6= 0.

As in part (a), factor the determinant so that we have the following.

A C

0
′ B

=
A 0

0
′ B

I A−1C

0
′ I

Then, by part (a), we get
A 0

0 B
= |A||B|, and

I A−1C

0
′ I

= 1.
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4.10 Show that if A is square,

|A| = |A22||A11 − A12A
−1
22 A21| for |A22| 6= 0

= |A11||A22 − A21A
−1
11 A12| for |A11| 6= 0

Let

A =

(

A11 A12

A21 A22

)

and factor so that we have the following.

(

I −A12A
−1
22

0′ I

)(

A11 A12

A21 A22

)(

I 0

−A−1
22 A21 I

)

=

(

A11 − A12A
−1
22 A21 0

A21 A22

)(

I 0

−A−1
22 A21 I

)

=

(

A11 − A12A
−1
22 A21 0

0 A22

)

Finally, we have

(

I −A12A
−1
22

0′ I

)(

A11 A12

A21 A22

)(

I 0

−A−1
22 A21 I

)

=

(

A11 − A12A
−1
22 A21 0

0 A22

)

Taking the determinant of both sides, we get the following.

|I||A||I| = |A22||A11 − A12A
−1
22 A21|

|A| = |A22||A11 − A12A
−1
22 A21|

For the second relation, we do the same by factoring A so that we have the following.

(

I 0

−A21A
−1
11 I

)(

A11 A12

A21 A22

)(

I −A−1
11 A21

0′ I

)

=

(

A11 A12

0 A22 − A21A
−1
11 A12

)(

I −A−1
11 A21

0′ I

)

(

I 0

−A21A
−1
11 I

)(

A11 A12

A21 A22

)(

I −A−1
11 A21

0′ I

)

=

(

A11 0

0 A22 − A21A
−1
11 A12

)

Again, taking the determinant of both sides we get the following.

|I||A||I| = |A11||A22 − A21A
−1
11 A12|

|A| = |A11||A22 − A21A
−1
11 A12|

4.16 Let X i, i = 1, 2, . . . , 4, be independent Np(µ,Σ) random vectors.
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(a) Find the marginal distributions for each of the random vectors

V 1 =
1

4
X1 −

1

4
X2 +

1

4
X3 −

1

4
X4

and

V 2 =
1

4
X1 +

1

4
X2 −

1

4
X3 −

1

4
X4

By result 4.8 in the text, V 1 and V 2 have the following distribution.

Np





n
∑

j=1

cjµ,





n
∑

j=1

c2
j



Σ





Then we have V 1 ∼ Np(0, 1
4Σ) and V 2 ∼ Np(0, 1

4Σ).

(b) Find the joint distribution of the random vectors V 1 and V 2 defined in (a).

Also by result 4.8, V 1 and V 2 are jointly multivariate normal with covariance
matrix





















n
∑

j=1

c2
j



Σ (b′c)Σ

(b′c)Σ





n
∑

j=1

b2
j



Σ

















With c = (1/4,−1/4, 1/4,−1/4)′ and b = (1/4, 1/4,−1/4,−1/4)′. So that we
have the covariance matrix

[

1
4Σ 0

0
1
4Σ

]

6.11 A likelihood argument provides aditional support for pooling the two independent
sample covariance matrices to estimate a common covariance matrix in the case of
two normal populations. Give the likelihood function L(µ1, µ2,Σ), for the two inde-
pendent samples of sizes n1 and n2 from Np(µ1,Σ) and Np(µ2,Σ) respectively. Show
that this likelihood is maximized by the choices µ̂1 = x̄1, µ̂2 = x̄2 and

Σ̂ =
1

n1 + n2
[(n1 − 1)S1 + (n2 − 1)S2] =

n1 + n2 − 1

n1 + n2
Spooled

Here we note the density function for the multivariate normal distribution for refer-
ence.

f(x; µ,Σ) =
1

(2π)p/2|Σ|1/2
e−

1

2
(x−µ)′Σ−1(x−µ)
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Then we have the likelihood function for the two independent samples as defined
below.

L(µ1, µ2,Σ) =

n1
∏

i=1

f(X i; µ1,Σ)

n2
∏

j=1

f(Xj ; µ2,Σ)

= L(µ1,Σ)L(µ2,Σ)

This statement gives us directly that µ̂1 = x̄1, µ̂2 = x̄2. Using equation (4-13) in the
text, the likelihood function can defined as

L(µ1, µ2,Σ) =
1

(2π)Np/2|Σ|N/2
exp



−1

2
tr



Σ
−1





n1
∑

i=1

Φ1(Xi) +

n2
∑

j=1

Φ2(Xj)













Where

Φi(x) = (x − µi)(x − µi)
′

By result 4.10 in the text, we let B =

n1
∑

i=1

Φ1(xi) +

n2
∑

j=1

Φ2(xj), b = N = n1 + n2 and

substitute the MLE’s for each mean, then the maximum is reached at

Σ̂ =
1

2(n1 + n2)
B

And we get the result

Σ̂ =
1

n1 + n2
[(n1 − 1)S1 + (n2 − 1)S2] =

n1 + n2 − 1

n1 + n2
Spooled
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