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The aim of this project is to find a good model to predict average annual precipitation
in California. We have been given data from thirty meteorological stations in the state and
include altitude, latitude, distance from the coast and the average annual precipitation.
We will begin by considering a linear model that has the form

y = Bo+Piz1+ Boews + Baus +¢ (1)

Where the x; are the predictor variables of altitude, latitude and distance from the coast, y
represents average precipitation. It is assumed that the error term ¢ is normally distributed

with mean zero and variance o2.

1 Initial Analysis

The first thing we look at is the R? coefficient along with the F statistic and the p-value
for the F' test. These things can be seen in Table 1. Although, the R? is not terribly high,
these numbers appear to indicate an adequate fit for the model as a whole. We also look

R* | F | Pr(F > |F§y)
0.60 | 13.02 | 2.204e-05

Table 1: R? and F test

at the figures in Table 2, where we see the t statistic and the corresponding p-values. Each
is well within the a = 0.05 significance level, indicating that each term that we have in the
model is significant. The numbers in Table 2 show a weak relationship (meaning the value
of the coefficient is quite small) between altitude and distance from coast and the average
rainfall when considering the model as whole. Lattitude shows a slightly stronger effect on
the average rainfall. This seems to make sense, that as we get closer to the wet regions in
the northwest, we should expect more precipitation. Likewise, we expect less rain as we
get farther from the coast, meaning a negative relationship, and more rain as we get into
higher elevations. The coefficients show that we do, in fact, have these relationships.

If we look at plots of the predictors individually against average rainfall, we can see
whether or not the relationships appear to be linear. The plots in Figure 1 show that the



| Estimate | ¢ value | Pr(> [t])

Bo (Intercept) -1.03e+02 | -3.54e+00 | 1.55e-03
B1 (Altitude) 4.06e-03 | 3.36e+00 | 2.43e-03
B2 (Latitude) 3.47¢+00 | 4.38¢+00 | 1.75e-04
B3 (Dist from Coast) | -1.42e-01 | -3.93e+00 | 5.67e-04

Table 2: T-Tests

amount of precipitation is not really a linear function of distance from coast or altitude.
This could be the reason for the weak relationship. The plot for altitude vs average rainfall,
however, shows a general trend to having more rainfall in the higher altitudes, although
this trend is not very strong.

Figure 2 shows various plots for the linear model considered in (1). In the Residuals
vs Fitted plot and the Scale-Location plot, we notice a distinct pattern where there shold
be no pattern, this indicates the model does not fit very well. We also see that the error
terms may not be normally distributed due to some outliers. The question, then, becomes
whether or not the indicated data points are really outliers, and what would happen to the
model if the outliers were removed.

2 Removing Outliers

Here, we remove the three points with the highest Cook’s distance from the initial analysis
and see how the model is affected. We again look at the same statistics and plots as in
the first section. The values of each of the coefficients along with a t-test testing whether
each term is significant (3; = 0Vi) can be seen in Table 3. This table shows that the value
of the coefficients were not affected significantly by removing the outliers. There is a big
difference in the p-values, meaning we gained more significance in each term.

| Estimate | ¢ value | Pr(> [t])

(Intercept) | -9.58e+01 | -4.92e+00 | 5.74e-05
Altitude 4.14e-03 | 5.13e+00 | 3.35e-05
Latitude | 3.19e4+00 | 5.94e+00 | 4.63e-06

Dist from Coast | -1.14e-01 | -5.23e4+00 | 2.64e-05

Table 3: Coeflicients and ¢-test with outliers removed

Table 4 shows the R? and the result of an F test for all coefficients being zero. This
shows significant improvement over the values in Table 1. Which would indicate that the
model as a whole fits better without the outliers.

Figure 3 shows the diagnostic plots for the new model without outliers. These plots
show an significant improvement in the Residuals vs Fitted and Scale-Location plots. The
Normal Q-Q plot also demonstrates that the residuals are closer to normality than with
the original data.
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Figure 1: Plots of each variable against Avg Rainfall

R* | F | Pr(F > |F§y)
0.77 | 25.37 | 1.775¢-07

Table 4: R? and F test with outliers removed

This analysis leads to the conclusion that the model can be improved by removing the
outliers detected during the initial analysis. Of course, the Cook’s distance plot in Figure 3
indicates more data points as outliers, which means we should repeat this analysis removing
those points. This may end up leading us to eliminate almost all of the data points. We
will next do a more close analysis of the outliers to determine if the outliers should have
been removed.

3 Outlier Analysis

An outlier is generally thought of as a data point that severly effects the accuracy of a
model. There are many ways of defining and dealing with outliers. Our main concern
is whether or not any of the rainfall data qualify as outliers. Meaning that certain data
points may appear to be outliers, but actually define the model as opposed to negatively



Residuals vs Fitted Normal Q-Q plot
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Figure 2: Linear Model Plots

affecting it. Or if those points are valid and the model needs to be altered to ensure greater
accuracy.

The Cook’s distance plot in Figure 2 shows that there could be at least three significant
outliers in the initial analysis. One way of determining which data points are outliers is to
look at a boxplot. A boxplot shows the median as a solid line within a box representing
the distance between the first and third quartiles. The outer fences are calculated as 1.5
times the distance between the first and third quartiles.

Figure 4 shows boxplots for each of the variables in our model, including the dependent
variable of average precipitation. The plots indicate four possible outliers based on average
precipitation and altitude. Outliers are not indicated for latitude or distance from coast,
most likely because these two variables were sampled evenly throughout the state.

Data for the four outliers can be found in Table 5. With the exception of Crescent
City, all the possible outliers come from the higher elevations that are further from the
coast. Crescent City can be explained simply because it lies on the coast and very close
to Oregon which is known for its high levels of precipitation. It is quite interesting that
the data for Tulelake area does not show an equally high precipitation rate, this could be
another reason for the high Cook’s distance for Crescent City. In order to see what is going
on with the other three data points, it is instructive to look at a map.



Residuals vs Fitted Normal Q-Q plot
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Figure 3: Diagnostic plots with no outliers.

Figure 5 shows a map of California with the data points superimposed. It is striking
how well looking at this map describes exactly what is going on with the data. The ranges
for the different colors were calculated by dividing up the data into four evenly spaced
groups around the average precipitation. Then, given that most of the data fell into the
lowest category, that category was split into two groups. This may have been a rather
arbitrary way to split the data up, but it still gives a general idea of what is going on with
the weather in California.

The first thing we notice is that it appears that the amount of rain does actually increase
as we go further north in the state. The second is that all three of the major outliers are
located in the mountains. This is not surprising since the elevation is one of the main
factors in indicating their being outliers. What is interesting is if we take a pick one of
the outliers and look at two of the other points along the same latitude (Table 6). What
the data shows here is that we get a small amount of rain before the mountains, a large
amount in the mountains and an even smaller amount of rain on the other side of the
mountains. Meteorologists call this orographic lift. Orographic lift occurs when a system
of clouds is forced from a low elevation to a high one due to a change in terrain. What
typically happens is that as the air raises, it is cooled and the relative humidity goes up
causing precipitation. This happens in many areas of the world, one of which is here in the
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Figure 4: Boxplots

Wasatch front.

What this means for our model is immediately clear, the data points that were indicated
for being outliers are not. They are valid points describing a specific weather pattern that
exists in California. Unfortunately, there is nothing in the data to indicate that orographic
lift is happening. Take the data in Table 6 for example. The model indicates that at
a certain latitude, there should be more precipitation in the higher altitudes (especially
since the elevation in Susanville is 100 times higher than that of Red Bluff), but there is
actually less precipitation in Susanville than in Red Bluff. This happens for each of the
indicated outliers in the highest elevations. These points counteract the effects of distance
from coast and elevation since they cause higher elevations to recieve less rainfall than the
model would predict because the stations lie behind the Sierra Nevada mountains. This
can be seen with the data in Table 7 where we show the observed rainfall and the amount
predicted by the model.

All of this is complicated by the fact that there is a huge desert region in the southern
end of the state. In this southern region, most of the inputs do not really effect the model
very much. None of the stations are going to recieve much rain regardless of their location
in relation to the coast. Most of the stations, with only a few exceptions, in this region
are also at low elevations meaning that the elevation in this region will not make a huge



Station ‘ Avg Precipitation ‘ Altitude ‘ Latitude ‘ Dist from Coast

5  Soda Springs | 49.3 6752 39.3 150
9  Giant Forest | 42.6 6360 36.6 145
16 Mineral 47.8 4850 40.4 142
29 Crescent City | 74.9 35 41.7 1

Table 5: Data for outliers

Station Avg Precipitation | Altitude | Latitude | Dist from Coast

2 Red Bluff | 23.3 41 40.2 97
16 Mineral 47.8 4850 40.4 142
18 Susanville | 18.2 4152 40.3 198

Table 6: Data along 40" latitude

difference in the model.

4 Conclusions

The main conclusions reached here are that a simple linear model as in (1) does not fit
the data well enough to be of any practical use. Nor will removing any of the apparent
outliers improve the model any either, since those outliers represent conditions that affect
the weather. This leads to the conclusion that there is at least one hidden variable at play
in the model. One hidden variable could be the average humidity level at each station.
Humidity would be a good indicator of average rainfall.



Station ‘ Avg Precipitation ‘ Predicted Avg Precipitation

18 Susanville | 18.20 25.5
15 Bishop 5.73 14.9

Table 7: Actual values vs Predicted values

Avo Precipitation

1.66 - 994
10.03 - 19.33
21.82 - 37.48
39.57 - 49.26
74.87

Figure 5: California Precipitation Levels



