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EDF Statistics for Goodness of Fit

M. A. STEPHENS*

and Some Comparisons

This article offers a practical guide to goodness-of-fit tests using
statistics based on the empirical distribution function (EDF). Five of
the leading statistics are examined—those often labelled D, W2, V, U2,
A’—and three important situations: where the hypothesized distribu-
tion F(x) is completely specified and where F(x) represents the normal
or exponential distribution with one or more parameters to be estimated
from the data. EDF statistics are easily calculated, and the tests require
only one line of significance points for each situation. They are also
shown to be competitive in terms of power.

1. INTRODUCTION

The goodness-of-fit problem is as follows: given a
random sample 21, Z2, -+, 2., to test H,; the sample
comes from a population with distribution function F ().
The classical test for this problem is the X-test, which has
certain advantages: (a) it is well adapted for the case
when F(z) is discontinuous, i.e., represents a discrete
distribution, and (b) it is known (at least to a good ap-
proximation) how to adapt the statistic for the case
when parameters of F(x) must themselves be estimated
from the sample.

This article deals with another class of goodness-of-fit
statistics—EDF statistics, so-called because they are
based on a comparison of F(x) with the empirical dis-
tribution function F,(x). For the case when F(x) is
continuous and completely specified (Case 0 in Section 2),
it has long been known that, in general, EDF statistics
give more powerful tests of H, than x2. The disadvantage
is that they are neither well adapted for discrete distribu-
tions, nor for the case when parameters must be estimated
from the sample. This last drawback, together with the
fact that they are considered more difficult to compute
than x2, has undoubtedly prevented their wider applica-
tion in practice. This is doubtful, certainly if the tech-
niques for estimating parameters and class intervals as
discussed, say, in Cramér [1, Ch. 30] and Kendall and
Stuart [6, Ch. 307 are followed. Recent work has made
it possible to use EDF statistics very easily in Case 0
and also for two very important practical situations—
when the distribution tested is normal or exponential,
with parameters to be estimated.

Here we give a practical guide to the use of EDF
statistics in these three situations. Power studies are also
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given for Case 0 and for testing for normality. For this
last case, EDF statistics have suffered recently from
comparison with the W-statistic of Shapiro and Wilk
[17]; no doubt, this is because the power studies re-
ported in that paper gave very low power to EDF statis-
tics. We show that, when used as described later, the
powers are much higher than previously reported, and
those of W? and A? are comparable to that of W, with
which they appear to be highly correlated. From a
practical point of view, the user may still prefer EDI'
statistics since these do not require special coefficients for
each n. On the theoretical side, slightly more is known
about W2, U? and A?, and the close liaison with the W-
statistic suggests theoretical questions to be investigated.

We discuss statistics usually called D (derived from
D+ and D-), W2, V, U? and A2 A suffix is often added to
represent sample size, but this will be omitted. Because
of the practical emphasis, definitions of these statistics
are omitted and only the computing formulas are given.

Once a test statistic has been calculated, a table is
entered to make the test. The choice of table depends on
what is known of F(z), so this is classified first in Section
2. The formulas and illustrations are in Section 3.
Comments on the tables and computational details are
given in Section 4, and the power studies are presented
in Sections 5 and 6.

2. KNOWLEDGE OF F(x).

The tables to be used with the statistics depend on
knowledge of F(x), classified as follows: :

Case 0: F(x) continuous, completely specified. This is the classi-
cal case, and tables of significance points for all the
statistics exist in the literature. For references see
Stephens [21]. The use of Table 1.0 as described in
Section 3 permits us to dispense with these tables.

Case 1: F(x) is the normal distribution, ¢? known, u estimated
by z.

Case 2: F(z) is the normal distribution, u known, ¢2 estimated
by X (@ — w/n ( = s, say)

Case 3: F(z) is the normal distribution, both x and ¢? unknown,
estimated by Z and s? = X (z: — 2)?/(n — 1)

Case 4: F(z) =1 — exp (— 0x), i.e., the test is for exponen-
tiality, with 6 estimated by 1/z.

These Case numbers are chosen to match those in [22],
where for each Case the asymptotic percentage points
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for W2, U? and A? are found theoretically. In a test for
normality, Case 3 is the important practical situation,
though Case 2 sometimes arises, e.g., if one wishes to
test residuals in regression analysis, transformed to give
linear combinations of residuals which are theoretically
independently normal with mean zero, but with variance
unknown.

3. TEST PROCEDURES
3.1 Steps in making a test
We suppose the given values are in ascending order
a1 L € e S
(a) When necessary, estimate parameters as described
previously.
(b) Calculate z, = F(z;),7=1,2, ---, n, where F(2)

may contain estimated parameters. For Case 3, this is
done, in practice, in two stages: first calculate w; from

w; = (x; — &)/ (Casel);
w; = (v; — w)/s1 (Case 2);
w, = (&; — Z)/s (Case 3);

then z, is the cumulative probability of a standard normal
distribution, to the value w;, found from standard tables
or computer routines. For Case 4, z; = 1 — exp (2:/Z).

(¢) For all cases, the required statistic is calculated
from the z-values (which are in ascending order) as
follows:

1. The Kolmogorov statistics D+, D™, D:

Dt = maxi<i<a [(¢/n) — 2:];

D~ = maxi<.<n [2: — (2 — 1)/n].

D = max (D*, D).
2. The Cramér-von Mises statistic W2:

W2 = Yi-ilzi — (20 — 1)/2nT + (1/12n)
3. The Kuiper statistic V:

V =D*+ D-.
4. The Watson statistic U2:

U? = W? — n(z — 3)? where 2 = Y 7= 2:/n.
5. The Anderson-Darling statistic A2:

A =— (Y21 (2 —D[nz +In(l —2,-90]/n —n.

(d) To make the test using one of the preceding
statistics (call it 7'), enter Table 1, part K for Case K
and calculate T*, the modified statistic; reject H, at a
chosen level of significance if T* exceeds the significance
point given on the same line. ,

The test described is the usual upper-tail test; on
occasion, particularly when a transformation is used to
produce uniform observations (Case 0), the lower tail
is necessary (see, e.g., [15] and [13]).

3.2 Points on a circle

Only statistics U2 and V should be used for such
points, and any suitable origin may be chosen; the other
statistics may take different values with different origins.
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U? and V may also, of course, be used for points on a line;
they have different power properties from A2, W? and
D, particularly for Case 0 (cf. Section 5).

3.3 MHlustrations

Tllustratton 1. Pearson [13] discusses the use of four.
of the preceding EDI" statistics (A2 is not included) on
eight examples. IFor Example 1, Pearson has 20 values of
warp breaks; these are transformed to a set of values to
be tested to come from a uniform distribution between
0 and 1. Thus we have a Case 0 situation. I'or D, Pearson
has the value 0.356. In Table 1.0, the modified D then be-
comes D* = 0.356(4.472 + 0.12 + 0.11/4.472) = 1.643,
and reference to Table 1.0 gives significance at a level
just less than one percent (Pearson gives 0.9 percent).

For U? the value is 0.298 and modified value is
U* = 0.304, significant at the 0.005 level, in agreement
with Pearson’s results.

Tllustration 2. The following values of men’s weights
in pounds, first given by Snedecor, were used by Shapiro
and Wilk [17] as an illustration of a test for normality :
148, 154, 158, 160, 161, 162, 166, 170, 182, 195, 236. The
mean is 172 and the standard deviation 24.95. Ior a test
for normality (Case 3), the values of the modified
statistics are: D* = 0.924, W?* =0.171, A** = 1.095,
U* = 0.150, V* = 1.544. Table 1.3 gives a-values 0.035,
0.01, 0.01, 0.035. The one percent values given by the W?
and A? statistics agree closely with the result of Shapiro
and Wilk; this result, as well as the higher values of «
given by D and V are in agreement with comments made
on the powers of EDF statistics in Section 5.

Illustration 3. Proschan [14] gives 213 values of times
t to failure of air-conditioning equipment in aircraft,
believed to follow an exponential distribution with 6
unknown. {is 93.14, so § in Case 4 is 0.0107. Proschan uses
the well-known technique of adding D, to F.(t) or sub-
tracting it from F.(¢) to obtain a confidence interval for
F(t) and uses this to construct a confidence interval for
the fraction surviving after time ¢. D, refers to the upper-
tail critical value of the Kolmogorov statistic at level «,
giving a (1 — «) percent confidence interval. In this case,
Proschan uses D, = 1.358/+4n = 0.0931; this corre-
sponds to o = 0.05, and 1.358 comes from the Case 0
Table 1.0. In fact, 1.358 should be replaced by 1.094 from
Table 1.4; this gives a much narrower confidence interval
in Proschan’s Figure 1 and is a direct result of estimating
the parameter. Proschan notes that although the test for
exponentiality does not (apparently) lead to rejection,
the variables nevertheless do not appear to be exponen-
tially distributed. When the test is made, values of test
statistics are vnD = 1.067, W? = 0.324, U? = 0.190,
V = 1.588 and A? = 1.691; when Table 1.0 is used, none
of these is significant at the 10 percent level—D not even
at the 15 percent level. However, when the correct Table
1.4 is used, the significance levels « corresponding to these
values are approximately 0.06, 0.012, 0.025, 0.07 and
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1A. Modifications to D, V, W2 U? A? Cases 0, 3 and 4
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Percentage points for T*

Statistic T Modified form T*
15.0 10.0 5.0 2.5 1.0
1.0 Modifications for the test when F(x) is completely known?

D*(D") D*(Vn +0.12 + 0.11/Vn) 0.973 1.073 1.224 1.358 1.518

D(Vn +0.12 + 0.11/Vn) 1.138 1.224 1.358 1.480 1.628
\Y V(Vn +0.155 + 0.24/V'n) 1.537 1.620 1.747 1.862 2.001
W2 (W2 —0.4/n + 0.6/n?)(1.0 + 1.0/n) 0.284 0.347 0.461 0.581 0.743
u? (U2 - 0.1/n +0.1/n%)(1.0 + 0.8/n) 0.131 0.152 0.187 0.221 0.267
A? For all n = 5: 1.610 1.933 2.492 3.070 3.857

1.3 Modifications for a fest for normality, © and ¢* unknown?
D D(Vn —0.01 + 0.85/Vn) 0.775 0.819 0.895 0.955 1.035
\ V(Vn + 0.05 + 0.82/V/n) 1.320 1.386 1.489 1.585 1.693
W2 WZ%(1 + 0.5/n) 0.091 0.104 0.126 0.148 0.178
uz U%(1 + 0.5/n) 0.085 0.096 0.116 0.136 0.163
A? A%(1 + 4/n - 25/n?) 0.576 0.656 0.787 0.918 1.092
1.4 Modifications for a test for exponentiality, § unknown?

D (D —0.2/n)(Vn + 0.26 + 0.5/Vn) 0.926 0.990 1.094 1.190 1.308
\Y% (V—0.2/n)(Vh + 0.24 + 0.35/Vn) 1.445 1.527 1.655 1.774 1.910
w2 W2(1 + 0.16/n) 0.149 0.177 0.224 0.273 0.337
u? U%(1 + 0.16/n) 0.112 0.130 0.161 0.191 0.230
A? A%(1 + 0.8/n) 0.922 1.078 1.341 1.606 1.957

2 Tables 1.0, 1.3 and 1.4, with slight changes, have appeared in [13a]. Among the changes are revised versions of the modified forms for Az in Tables 1.3 and 1 4, those in-

cluded in this article give more accurate results, though the differences are very small.

0.02, respectively. Thus, use of W2, U? or A2 would have
led to rejection at the five percent level, and even D is
nearly significant at this level. We show later that, for
Case 3, W? and A? are preferred statistics in terms of
better power and that D is poor ; although power studies
are not given here for Case 4, these studies indicate
good performance for W2 and A2 for this Case also. Thus
Proschan’s conclusion would have been supported by the
more powerful W2, U? or A2

4. TABLES AND COMPUTATIONAL DETAILS
4.1 Tables

Table 1, in five parts, contains the formulas and per-
centage points with which tests will be made; Table 1.K
is to be used with Case K. For Cases 0, 3 and 4, the three
most practical situations, the Tables 1.0, 1.3 and 1.4
have been grouped together. Table 1.0 comes from
Stephens [21] with the Anderson-Darling statistic re-
placing the 4 in that paper. The new A? converges so
rapidly that no modification is required for any realistic
situation (n 2 5). This was suggested by Marshall [12]
and has been confirmed by Monte-Carlo studies by Lewis
[8]. Tables 1.1 to 1.4, the asymptotic points (those given
for use with the modified forms), have been calculated
theoretically for W2, U? and A2 [22].

For n finite, significance points for all statistics are
difficult to find theoretically and have been found from
Monte-Carlo studies by the author. These mostly in-
volved 10,000 samples for each of many values of n. The
points for a given significance level were plotted against
1/n or 1/4n, and smoothed ; for D and V they were also

extrapolated to obtain the asymptotic points. The
original five percent and one percent points, for all
statistics except A2, were given in [19, 20]. Since A4? is
found to be a powerful statistic, the points for A? are
now added in Table 2. The modified forms were calculated
from the smoothed Monte-Carlo points. For details on
the general procedure, see [21]. Other Monte-Carlo
studies, each one usually for only one or two statistics,

1B. Percentage Points for Cases 1 and 2

Percentage level (%)

Statistic n
15 10 5 2.5 1
1.1 Asymptotic points for W2, U2, A2, Cése 1 (exact)
w2 0.135 0.165 0.196 0.237
Vi 128 157 187 .227
A? .908 1.105 1.304 1.573
1.2 Percentage points for Case 2:
(Monte Carlo results for D, V; exact results for W2, U2, A?)
VnD 10 1.050 1.138 1.270 1.380 1.530
20 1.070 1.160 1.290 1.415 1.570
50 1.080 1.170 1.310 1.432 1.595
100 1.100 1.180 1.320 1.440 1.610
o 1.120 1.190 1.333 1.455 1.625
Vnv 10 1.305 1 385 1.500 1.595 1.710
20 1.345 1.410 1.535 1.642 1.770
50 1.380 1.450 1.570 1.680 1.810
100 1.390 1.470 1.590 1.697 1.825
0 1.410 1.490 1.612 1.720 1.845
w2 all n =5 .329 443 .562 .723
Vi alln =5 123 .153 .182 221
A? alln =5 1.760 2.323 2.904 3.690
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2. Percentage Points for A% Cases 3 and 4
(Monte Carlo Points for Finite n;
Exact Asymptotic Points)

Percentage level (%)

n
15 10 5 2.5 1
Case 3
10 514 .578 .683 779 .926
20 .528 591 .704 .815 .969
50 .546 .616 735 .861 1.021
100 .559 .631 .754 .884 1.047
] 576 .656 .787 918 1.092
Case 4
10 .887 1.022 1.265 1.515 1.888
20 .898 1.045 1.300 1.556 1.927
50 911 1.062 1.323 1.582 1.945
100 916 1.070 1.330 1.595 1.951
00 922 1.078 1.341 1.606 1.957

have been reported for Cases 3 and 4 as follows : Lilliefors
[9, 10], statistic D ; Van Soest [24], statistics D and W?2;
Koerts and Abrahamse [7] and Louter and Koerts [117],
statistic V. The points given by these authors agree well
with the values given by using Tables 1.3 or 1.4, except
for some differences in estimates of asymptotic points
for D and V. Those given here are based on sample sizes
up to 100; other authors have n < 40. In any event the
practical difference is very small. The various Monte-
Carlo points in the literature may be used to obtain an
estimate of o, the true significance level of a point cal-
culated from the modified forms at level «. For n = 10
and 25, the estimated difference [/ — «| never exceeds
0.002 for « = 0.05 and 0.01 and only once exceeds 0.005
for & = 0.10. '

For Case 1, the most unlikely to arise in practice, only
asymptotic points, obtained from [227, are known. These
are given in Table 1.1. For Case 2, the asymptotic points
are supported by some Monte-Carlo points given in
Table 1.2; no modifications have been calculated.

5. POWER COMPARISONS: TEST FOR UNIFORMITY
5.1 Results of Power Studies for Case 0

Table 3 gives results based on at least 1,000 Monte-
Carlo samples,; drawn from given distributions and tested
for uniformity. This table also gives the percentage of
samples declaréd significant by various test statistics.

If F(z) is completely specified, the z; should be uni-
formly distributed between 0 and 1, written U(0, 1).
Power studies have therefore been confined to a test of
this hypothesis concerning z, when the z; are in fact drawn
from alternative distributions. If the variance of the
hypothesized F(z) is correct but the mean is wrong, the
points z; will tend to move toward 0 or 1; if the mean is
correct but the variance wrong, the points will move to
each end, or will move towards 0.5.

The following alternatives 4, B, C were chosen to give
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patterns of z-values corresponding to these situations:

A: F(z) =1 — (1 — 2)%, 0<z2<1;
B: F(z) = 2+ 13k 0<2<0.5;
F(z) =1 — 2F1(1 — 2)F 05<2< 1,

C: F(z) = 05 — 26105 —2)k,  0< 2<05;
F(z) = 0.5 + 2¥1(z — 0.5)%, 05<2z< 1.

A gives points closer to zero than expected on the
hypothesis of uniformity; B gives points near 0.5; C
gives two clusters close to 0 and 1.

Table 3 shows that statistics D, W2 and A2 will detect
a change in mean better than the others, and V and U?
will detect a change in variance. This is to be expected
from the geometry associated with their null distribu-
tions. W? and A? tend to be better than D, and U?
slightly better than V. In practice, it would always seem
worth while to look at W?, U? and A2 Historically, D has
been the most used EDF statistic, but of the four, it
tends to be the least powerful, overall. For references to
earlier work on Case 0, see [6].

Included in Table 3 are some results for X? (with
expected number 5 per cell, i.e., degrees of freedom 3 for
n = 20, 7 for n = 40). X2 is not at all as powerful as
EDF statistics. Results are given also for statistic
Q = Y. In z; which, on H,, has the x3, distribution. Q »
is included for comparison, since it is most powerful
against alternative distribution A, and it is rare in
goodness-of-fit work to have such a standard available.
Some interesting comparisons, but only for D and V, are
given by Koerts and Abrahamse [ 7] for tests for a normal
distribution N (0, 1), against N (u, ¢%), with 16 pairs of
g, o. Durbin and Knott [5] and Stephens [23] give
theoretical asymptotic powers for normal and exponential
tests against the same family of alternatives.

3. Power Comparisons, Test for Uniformity (case 0)?

N n D wr v U A Q X2

A k=15 10 23 27 18 19 24 43 —
20 38 46 25 28 46 68 —
40 60 70 43 43 — 89 40

A k=20 10 54 60 35 35 58 — —
20 78 87 61 60 87 97 59
40 98 99 91 89 —

B,k=1.5 10 9 7 22 23 6 — —
20 13 11 32 34 10 11 —
40 19 22 57 61 — — 39

B, k=20 10 ‘9 7 40 44 6 — —
20 25 25 7 77 28 25 —
40 56 72 96 98 — — 85

B,k=3.0 10 21 21 81 86 18
20 63 79 99 99 84

C,k=15 20 25 20 3 37 28
40 3 32 58 63 —

C, k=20 20 47 44 7 77 54
40 7 80 96 98 —

aThis table gives the percentage of samples significant, when the population is
as shown and each sample has size n. The test is at the 10% level.
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5.2 Correlation between test statistics

Clearly, there are fairly strong correlations between
the various test statistics. To gain some information on
these, a matrix R was produced for each power study,
giving, in cell (7;;), the number of samples significant by
two of the test statistics, say T;and 7';; cell (7;,) contains
the number significant by 7'; alone.

A typical R matrix is in Table 6 of [19]. We include
another in Table 4.

4. Typical Output Matrix of Power Studies?®

Statistic D w2 v U? A2
D 94
w2 71 90
\% 48 40 95
U2 48 43 69 87
A? 70 83 43 47 98

aThe test is for uniformity, n = 20, « =.10. The samples are actually from a uniform
distribution. The matrix gives number of 1000 samples significant by both statistics
(row and column).

6. POWER COMPARISONS: TEST FOR NORMALITY
6.1 Other statistics for testing for normality (Case 3)

In Section 6.2 we discuss power results for the im-
portant problem of testing for normality when the
parameters u and ¢ are unknown. Tables 5 and 6 contain
results for EDF statistics and for statistics W, D4 and
W'. These statistics will be briefly described. W is a
statistic introduced by Shapiro and Wilk [17], and Dy,
W’ are subsequent extensions introduced by d’Agostino
[2, 3] (there called D), and Shapiro and Francia [16].

The W statistic is based on a comparison of two esti-
mates of ¢2: the usual s?, and the estimate ¢ obtained by
least squares estimation of the slope, when the ordered
observations z; are plotted against expected values of
order statistics from a standard normal distribution.
From a practical viewpoint, this procedure has some
disadvantages. For each n, a different set of coefficients
is required for the estimation of ¢ ; these are not available
for n > 50. Exact coefficients are given by Shapiro and
Wilk, for n £ 20, and approximate values for 20 < n
< 50. Further, a set of significance points is needed for
each n.

The statistics D4 and W’ are esssentially introduced to
extend the W statistic for use beyond n = 50. Both use
estimators ¢ which are asymptotically less efficient than
that used in W ; d’Agostino needs no special coefficients,
and Shapiro and Francia need the expected values of
standard normal order statistics as coefficients. These are,
of course, available. The null distribution theory of these
three statistics is difficult; even asymptotic theory is
lacking. Thus, for the W and W’ statistics, Monte-Carlo
methods were used to provide the significance points in
the papers cited; for D4, approximate points are given,
using moments in connection with Cornish-Fisher ex-
pansions or the fitting of Pearson curves.

Significant values of these statistics are in the lower
tail for W, and in both tails for D4. Low values have been
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5. Power Comparisons, Test for Normality (Case 3)2

Population

n D w? v U A 2 w
(81.8:) 4 X
X12 10 51 64 65 63 67 — 69
(8,15) 20 86 94 94 93 — 44 97
30 98 100 100 100 — 75 100
Exponential 10 30 38 36 37 41 — 43
(4,9) 20 59 74 71 70 82 27 85
30 76 90 88 86 95 52 97
Xa® 10 23 — — — — — —
(2.67,7) 20 40 55 50 — — — —_
30 57 —_ 68 — —_ — —
X4 20 33 45 — — — — 50
(2,6)
X102 20 18 23 - —_ — —_ 29
(.8,4.2)
Lognormal 10 45 56 53 53 59 — 60
(38,114) 20 78 88 84 85 91 40 93
30 94 99 97 98 99 70 99
Uniform 20 12 16 17 18 21 8 21
(0,1.8) 30 17 26 25 29 — 12 42
50 28 47 44 52 —_ 21 88
Cauchy 10 58 62 60 61 62 — 59
— 20 86 88 87 88 98 —_ 87
Laplace 10 13 16 14 15 16 — 14
(0,6) 20 22 26 22 25 26 12 25
30 29 35 31 34 — 26 30
Student-t, 20 95 88 — — — — 88
Student-t, 10 17 18 18 18 20 — —
20 23 28 25 29 32 — —
Student-t, 20 17 21 18 20 23 — 24
Student-t, 20 10 12 1 11 14 — 15

aThe table gives the percentage of samples significant, when the population is as
shown, and the samples have size n. The test is at the 5% level.

used for W’ as for W. Significant values are not always
readily interpretable in terms of properties of the parent
population ; the authors, in introducing W and D,, have
decided on the critical regions from the results of Monte-
Carlo studies.

6.2 Power comparisons

Tables 5 and 6 give the percentage of M Monte-Carlo
samples, each of size n and drawn from the population
given, which were declared significant by the statistics
quoted when the test for normality, of size «, was applied.
In Table 5, M was at least 1,000, and in Table 6, M was
at least 2,000 for n = 50 and at least 500 for n = 90.
With these values one can make a good comparison of
relative power. In Table 5, = 0.05; then comparisons
can be made, for n = 20, with results reported by Shapiro
and Wilk [17]. More extensive results were later re-
ported by Shapiro, Wilk and Chen [187). These results
included power studies for older statistics used in testing
for normality, such as X2, b; and by, or ¥ = (range/stan-
dard deviation). These are on the whole much inferior to
W. Shapiro and Wilk [17] also included.power studies for
D, W2 and A? (there called D, CVM, WCV M) and found
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6. Power Comparisons, Test for Normality (Case 3)?

Population s
n D, Dt D w w w2 A?
(81,82 o *
Uniform 50 69 0 69 95 — 61 75
(0,1.8) 90 96 0 96 — 98 88 95
Cauchy 50 30 0 30 100 — 98 100
90 55 0 55 —_ 100 100 100
Exponential 50 0 92 92 100 — 100 100
(4,9) 90 0 99 99 — 100 100 100
X4 50 0 66 66 99 —_ 89 94
(2,6) 90 0 82 82 — 100 100 100
Laplace 50 0 69 69 50 — 63 64
(0,6) 90 0 91 91 —_ 90 86 86
Lognormal 50 0 99 99 100 — 100 100
(38,114)

Weibull, K= 2 50 5 15 20 59 — 32 45
~ (.63,3.25) 90 4 18 22 — 83 64 76
Tukey, A =5 50 0 14 14 24 — 38 37
(0,2.9) 90 1 18 19 — 4 64 62
Student-t, 50 0 58 58 43 — 48 52
90 0 78 78 — 78 66 69

aThe table gives the percentage of samples significant, when the population is as
shown, and each sample Is of size n. The test is at the 10% level. The columns headed
D,V and D, show those samples significant at the upper and lower 5% levels for D,

these statistics also greatly inferior to W. However, their
results are misleading. This is because, in using EDF
statistics to test for normality, when in fact the sample
came from another distribution, it was supposed that the
true mean and variance were known to the tester. Then
Case 0 was assumed and, effectively, Table 1.0 was used.
But for a true comparison with W (and later, with D,
and W’) we should allow the tester to estimate his own
mean and variance, and follow the procedure of Case 3.
This has been done to produce the results in Tables 5
and 6.

Other comparisons have been given by Koerts and
Abrahamse [7] for statistics D, V, by van Soest [24] for
statistics D, W? and by Lilliefors [9] for statistic D only.
The results for X3, X5, X3, and Student-t, are taken from
these authors: their other values agree with Table 5,
except for Lilliefors’ Student-t; results for D, which
appear to be incorrect.

The tables show that EDF statistics, when used as
described for Case 3, have powers roughly comparable
with those of W. The most widely known statistic, the
Kolmogorov D, gives the poorest performance, as for
Case 0. The difference between V and U2 on the one hand,
and D and W? on the other, noted for Case 0, largely
disappears when one is allowed to estimate the mean and
variance of the normal distribution (as might be ex-
pected). Overall, A2 and W? appear to be the best pair of
EDF statistics.

Table 6 includes the statistics D4 and W’. The value
a = 0.10 has been used to enable comparisons to be
made with those of d’Agostino [2] which concern only D,
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and W for n = 50. They match closely the results in
Table 6 for these two statistics. Table 6 includes, in
columns DY and D%, results using D4 at level @ = 0.05
in the upper or lower tail only ; they bear out d’Agostino’s
comments that, overall, a two-tail test is needed when
D, is used. However, D, gives relatively poor results; a
possible explanation is as follows. In the calculation of W,
generalized least-squares, known to have good properties,
is used for one estimate of ¢ (and the usual s for the
other). This, however, necessitates using a set of numeri-
cal coeflicients different for each n. In W’ a very good
approximation is used, but again numerical values are
needed ; the advantage is that the coefficients are available
for n > 50. In D,, these coefficients are replaced by
values which can easily be calculated; but a price is paid,
and power drops considerably.

Statistics W, for n up to 50, and W’, for n beyond 50,
appear slightly better than the best EDI' competitors
W?and A?; the user must decide whether the extra power
in using W or W’ is worth the extra effort in calculation.
The closeness of the results for W2 and, particularly, A?
to those for W suggests strong correlation between these
three statistics; the R matrices strongly bear this out.
On the whole," W2 and A? give very good performance
considering that for all n, only one formula is needed for
each statistic. Further, if the modified forms of Table 1
are used, only one line of significance points is required
for each statistic. Furthermore significant values have a
straightforward interpretation.

It is an interesting result of these studies that, in a test
of this type, it is better not to have the true mean and
variance available but to estimate it from the data! It
appears that since one is trying, in effect, to fit a density
of a certain shape to the data, the precise location and
scale is relatively unimportant, and being tied down to
fixed values, even correct ones, is more a hindrance than
a help. The paper by Durbin and Knott [5] deals with
Case 0, but brings out that W? (and similarly 42 and U?)
can be split into components which can be used separately
to test for location, scale and other (e.g. shape) effects;
see also [23]. Estimation of x and ¢ presumably reduces
the influence of the early components; it will be interest-
ing to see the extension of their work to the Case 3
situation.

6.3 Contour Maps of Power

An effective way to demonstrate the influence of the
higher moments of the true distribution on power, and
also to compare the different statistics, is to plot contour
maps of power on a 81, 82 diagram ; this has been done
for D, W and A?in Figures A—C. The maps shown are for
n = 20, « = 0.05; the diagram uses the conventional
v/Bi1, B2 grid as given in the discussion of Pearson curves
in [13a]. The lines give 7sodynes, i.e., lines of constant
power which are drawn from the results of the Monte-
Carlo studies in Tables 5 and 6, supplemented by others.
The power (%) is marked on the lines. The alternatives
were produced from combinations of easily generated
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A. Isodynes®: Kolmogorov-Smirnov Statistic D

/B

Normal
Point

I L 1 . L 1 s L L

# The test is a test for normality (Case 3), with N = 20, a = 0.05.

distributions, and their (81, B:) values form a grid of
approximately 40 points on the diagram where the lines
are drawn. These maps, although rough, give an easier
guide for power comparisons than extensive tables for
different statistics. Different true distributions with ap-
proximately the same (81, 82) point gave nearly the same
powers for any one statistic, as expected. One interesting
featureis that, for fairly large 85, a change of 8; from 0 to 1
hardly affects power at all for W and A?; this probably
demonstrates the fact that both these statistics give con-
siderable weight to observations in both tails.

B. Isodynes®: Anderson-Darling Statistic A2

/B,

= See note to Figure A.
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C. Isodynes®: Shapiro-Wilk Statistic W

/B

Normal
Point

= See note to Figure A.

6.4 Final remarks

W (and W’) uses a linear combination of order statis-
tics to estimate o; one could guard against various
alternatives to normality by varying the weights in these
combinations, and so produce different powers. Similarly,
slight adaptations of existing EDF statistics will vary
the powers against different alternatives. Although there
has been a tendency recently to propose such statistics,
there often seems to be very little justification. The
mathematics is often intractable, and Monte-Carlo
methods must be used for both null percentage points
and power studies. This in itself is not an objection if the
statistic proposed can be shown to have strong computa-
tional or other advantages, or systematically better
power against a wide class of alternatives when compared
with its best opposition. Power studies in support of new
statistics have often been skimpy; since, after all, we
don’t usually know the exact alternative to the null dis-
tribution, it is urged that a range of alternatives com-
parable to those used by Shapiro and Wilk [17] or in
Table 6 of this article should always be investigated.
Even if a new statistic is proposed and claimed to have
advantages only for a certain type of alternative (say
very skew, or long-tailed), for a real comparison with
statistics of the W or A? type, we need to see how the
new statistic fares when used on other alternatives also.

[Received February 19783. Revised January 1974.]
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