
1 Exercises 4a p.103

3. Done If λ̂H is the least squares estimate of the Lagrange multiplier associated with
the constraints Aβ = c show that

RSSH − RSS = σ2λ̂T
Hvar(λ̂H)−1λ̂H

Proof

From section 3.8.1 we know that

λ̂H = 2
[

A(X ′X)−1A′
]

−1
(Aβ̂ − c)

Then we can calculate var(λ̂H)−1.

var(λ̂H)−1 = var(2
[

A(X ′X)−1A′
]

−1
(Aβ̂ − c))−1 (1)

= var(2
[

A(X ′X)−1A′
]

−1
Aβ̂)−1 (2)

=
1

4

[

A(X ′X)−1A′
]

A−1var(β̂)−1
([

A(X ′X)−1A′
]

A−1
)

′

(3)

ϕ =
1

4σ2

[

A(X ′X)−1A′
] (

A(X ′X)−1A′
)

−1 [
A(X ′X)−1A′

]

(4)

Then our new expression is

RSSH − RSS = 4σ2(Aβ̂ − c)
[

A(X ′X)−1A′
]

−1
ϕ
[

A(X ′X)−1A′
]

−1
(Aβ̂ − c)(5)

= (Aβ̂ − c)
(

A(X ′X)−1
)

−1
(Aβ̂ − c)′ (6)

(7)

So that we have

RSSH − RSS = σ2λ̂T
Hvar(λ̂H)−1λ̂H (8)

5. Wrong Consider the full rank model Xβ = (X1, X2)(β
′

1, β
′

2)
′ where X ∼ n × q.

(a) Obtain a test statistic for β2 = 0.

Let

RSSH − RSS = (Aβ̂ − c)
(

A(X ′X)−1A′
)

−1
(Aβ̂ − c)′ (9)

Then we need to find the matrix A for the hypothesis H0 : β2 = 0. Then we
want to let c = 0 from (9) and the for the matrix A we have

Aβ = A1β1 + A2β2 (10)

= A2β2 = 0 (11)

Since β2 ∼ q×1, and for our particular H0, we have A1 = 0 and A2 ∼ (q−1)×q =
I(q−1)×q. Then we have

(b) Find E[RSSH − RSS].
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2 Exercises 4b p.109

1. Done Let Yi = β0 + β1xi,1 + · · · + βp−1xi,p−1 + εi, i = 1, 2, . . . , n, where the εi

are independent N(0, σ2). Prove that the F -statistic for testing the hypothesis
H : βr = βr+1 = · · · = βp−1 = 0 (0 < r ≤ p − 1) is unchanged if a constant, c,
is subtracted from each Yi.

Proof

Since r > 0, we could rewrite the model

Yi − c = β0 + β1xi,1 + · · · + βp−1xi,p−1 (12)

as

Yi = (β0 + c) + β1xi,1 + · · · + βp−1xi,p−1 (13)

Yi = β∗

0 + β1xi,1 + · · · + βp−1xi,p−1 (14)

and we are done.

2. Done Let Yi = β0 + β1xi + εi, (i = 0, 1, · · · , n). where εi ∼ N(0, σ2).

(a) Show that the correlation coefficient of β̂0 and β̂1 is −nx̄/(
√

n
∑

x2
i ).

Proof

We know that var(β̂) = σ2(X ′X)−1. Where

(X ′X)−1 =
1

∑

(xi − x̄)2

(

1
n

∑

x2
i −x̄

−x̄ 1

)

(15)

ρβ̂0,β̂1
=

cov(β̂0, β̂1)
√

var(β̂0)var(β̂1)
(16)

Then if

γ =
n
∑

i=0

(xi − x̄)2 (17)

(18)

We have

ρ =
σ2(−x̄)/γ

√

σ4( 1
n

∑

x2
i )/γ)(1/γ)

(19)

=
−x̄

√

( 1
n

∑

x2
i )

(20)

=
−nx̄

√

n
∑

x2
i )

(21)

and we are done.
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(b) Derive an F -statistic for testing H : β0 = 0.

Proof

Here we will use equation (9) with the following definitions:

A =
(

1 0
)

(22)

c = 0 (23)

Then the F -statistic is defined as

F =
β̂0
∑

x2
i

S2
∑

(xi − x̄)2
(24)

3. Partial Given x̄ = 0, derive an F -statistic for H : β0 = β1. And show it is equivalent
to a certain t-test.

Let X ∼ n × 2, A ∼ 1 × 2 where A =
(

1 −1
)

, c = 0. The F -statistic will be
defined as

F =
RSSH − RSS/q

RSS/(n − p)
(25)

Where RSSH − RSS is defined as in (9). And we have

(X ′X)−1 =

(

1
n 0
0 1

P

x2

i

)

(26)

A(X ′X)−1A′ =
1

n
+

1
∑

x2
i

=

∑

x2
i + n

n
∑

x2
i

(27)

Aβ̂ − c = β̂0 − β̂1 (28)

RSS

n − p
= S2 (29)

Then the F -statistic is

F =
(β̂0 − β̂1)

2n
∑

x2
i

S2(
∑

x2
i + n)

(30)

4. Done Let

Y =





1 1
0 2

−1 1



 θ + ε (31)

And find an F -statistic for H : θ1 = 2θ2
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Then we take the F -statistic as defined in (25) with A =
(

1 −2
)

and c = 0. Where

(Aθ̂ − c) = θ1 − 2θ2 (32)

(X ′X)−1 =

(

1/2 0
0 1/6

)

(33)

A(X ′X)−1A = 7/6 (34)

F =
(θ̂1 − 2θ̂2)

2

(7/6)S2
(35)

5. Done (Ryan) Given Y = θ + ε, where ε ∼ N(0, σ2I4) and θ1 + θ2 + θ3 + θ4 = 0,
show that the F -statistic for testing H : θ1 = θ3 is

2(Y1 − Y3)
2

(Y1 + Y2 + Y3 + Y4)2

According to Dr. Horvath, what they mean by Y = θ + ε is the following:

Y1 = θ1 + ε1

Y2 = θ2 + ε2

Y3 = θ3 + ε3

Y4 = θ4 + ε4

But with the restriction θ1 + θ2 + θ3 + θ4 = 0 we can write it as:

Y1 = θ1 + ε1

Y2 = θ2 + ε2

Y3 = θ3 + ε3

Y4 = −(θ1 + θ2 + θ3) + ε4

So we can write the model as Y = Xθ + ε, where:

X =









1 0 0
0 1 0
0 0 1
−1 −1 −1









and θ =





θ1

θ2

θ3





Now with A = (1, 0,−1) you can find the F statistic for the test and you’ll get the
answer in the book. I didn’t use the Lagrange multiplier hint (or at least I didn’t
realize I was using it if I did), but doing it this way requires inverting a 3x3 matrix
and I don’t know if he’ll ask one that requires that.

3 Exercises 4c p.113

1. Done Suppose that β1 = · · · = βp−1 = 0. Find the distribution of R2 and hence
prove that E[R2] = (p − 1)/(n − 1).
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From example 4.8 in the book, we know that under H : β1 = · · · = βp−1 = 0, we have
the F -statistic

F =
R2

1 − R2

n − p

p − 1

Which we rewrite

R2 =

p−1
n−pF

1 + p−1
n−pF

(36)

Which is distributed like Beta((p − 1)/2, (n − p)/2)), and has mean (p − 1)/(n − 1).

2. Partial,Most For the general linear full-rank regression model, prove that R2 and
the F -statistic for testing H : βj = 0 (j 6= 0) are independent of the units in which
the Yi and the xij are measured.

This means that we have the new model

Y/c = XKβ + ε (37)

Where the matrix K = diag(1, k1, . . . , kp−1) and we write

Y ∗ = X∗β∗ + ε∗ (38)

Then, to calculate the F -statistic we use (25) with the matrix A ∼ 1×p where the j th

element is 1 and the rest are 0 and c = 0. We also note that the matrix K is diagonal
and, therefore, symmetric. Then we use the following definitions to calculate (25)

zj = [(X ′X)−1]jj (39)

(A(X ′∗X∗)−1A′)−1 = (A(KX ′XK)−1A′)−1 (40)

= (AK−1(X ′X)−1K−1A′)−1 (41)

=
k2

j

zj
(42)

(Aβ̂∗ − c) =
β̂j

ckj
(43)

RSSH − RSS/q =
β̂j

c2zj
(44)

(45)

Ŷ ∗ = XK(KX ′XK)−1KX ′Y/c (46)

= XKK−1(X ′X)−1K−1KX ′Y/c (47)

= X(X ′X)−1X ′Y/c (48)

= Ŷ /c (49)
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RSS = (Ŷ ∗ − Y ∗)′(Ŷ ∗ − Y ∗) (50)

=
RSS

c2
(51)

RSSH − RSS/q

RSS/(n − p)
=

β̂j

c2zj

RSS/(n − p)c2
(52)

=
β̂j

zjS2
(53)

Which proves that the F -statistic is not affected by how the design points are mea-
sured.

4 Miscellaneous exercises 4 p.117

2. Done Given the two regression lines

Yki = βkxi + εki (k = 1, 2; i = 1, 2, . . . , n)

show that the F -statistic for testing H : β1 = β2 can be put in the form

F =
(β̂1 − β̂2)

2

2S2(
∑

x2
i )

−1

Obtain RSS and RSSH and verify that

RSSH − RSS =

∑

x2
i (β̂1 − β̂2)

2

2

First we define a combined model

Y = Xβ + ε
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Where we define

Y =





























Y1,1

Y1,2
...

Y1,n

Y2,1

Y2,2
...

Y2,n





























(54)

X =





























x1 0
x2 0
...

...
xn 0
0 x1

0 x2
...

...
0 xn





























(55)

β =

(

β1

β2

)

(56)

Then we follow the regular procedure of using (25) to define the F -statistic. In this
case, use A =

(

1 −1
)

and c = 0. Then we have

(A(X ′X)−1A′)−1 =

∑

xi

2
(57)

(Aβ̂ − c) = (β̂1 − β̂2) (58)

Which gives us

F =

∑

xi(β̂1 − β̂2)

2S2
(59)

And we are done since the second part of this question follows from the first.

4. Done, Ryan A series of n + 1 observations Yi (i = 1, 2, . . . , n + 1) are taken from
a normal distribution with unknown variance σ2. After the first n observations it is
suspected that there is a sudden change in the mean of the distribution. Derive a
test statistic for testing the hypothesis that the (n + 1)st observation has the same
population mean as the previous observations.

For this one, to set it up like a linear model, you can look at the model:

Y1 = µ + ε1

Y2 = µ + ε2
...

Yn = µ + ε3

Yn+1 = λ + εn+1
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Which we can write as Y = Xβ + ε, where:

X =















1 0
1 0
...

...
1 0
0 1















and β =

(

µ
λ

)

So we can test H : µ = λ using A = (1,−1). We get:

(XTX)−1 =

(

1/n 0
0 1

)

so β̂ =

(

Ȳn

Yn+1

)

and A(XTX)−1AT =
1

n
+ 1

And

RSS/(n−1) =
1

n − 1





















Y1
...

Yn

Yn+1











−











Ȳ1
...

Ȳn

Yn+1





















T 



















Y1
...

Yn

Yn+1











−











Ȳ1
...

Ȳn

Yn+1





















= S2
n

So I get:

F =
(Ȳn − Yn+1)

2

S2
n

(

1 + 1
n

)

Now if you take the square root, it kind of looks like the answer in the back of the
book. If you can get it into a t-distribution, let me know. It seems like it wouldn’t
be so bad, but I’m a little burned out.

5 Miscellaneous exercises 5 p.136

2. Not Done Prove that (1 − α/k)k > 1 − α (k > 1).

6. Done Let YI = β0 + β1xi + εi(i = 1, 2, . . . , n), where the εi are independently dis-
tributed as N(0, σ2). Obtain a set of multiple confidence intervals for all linear
combinations a0β0 + a1β1 (a0, a1 not both zero) such that the overall confidence for
the set is 100(1 − α)%.

Use equation (5.22) from the book which gives a confidence interval as

x′β̂ ± (pFα
p,n−p)

1/2S(x′(X ′X)−1x)1/2 (60)

with x = (a0, a1) and recongizing that (X ′X)−1 can be defined as in (15). Then we
get

x′(X ′X)−1x =
1

ϕ
(a2

0

∑

(x2
i /n) − 2a0a1x̄ + a2

1 (61)

ϕ =
∑

(xi − x̄)2 (62)

And we are done recognizing that x′β = a0β1 + a1β2.

8



7. Not Done In constructing simultaneous confidence intervals for all x′β, explain why
setting x0 ≡ 1 does not affect the theory. What modifications to the theory are
needed if β0 = 0?
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