
1 LTE of RK Methods

1

2 Absolute Stability of Runge-Kutta Methods

In order to plot the region of absolute stability for Runge-Kutta methods, we notice that for the method

yn+1 = p(hλ)yn

to be stable, we require
|p(κ)| < 1

For some polynomial p(hλ). For Runge-Kutta methods, the polynomial p(κ) is defined as

p(κ) =

k∑

i=0

1

i!
κi

Where κ = hλ is complex and k is the stage of the method. For k = 4, we get

p(κ) = 1 + κ+
1

2
κ2 +

1

6
κ3 +

1

24
κ4

We have written a routine in Python that scans through the complex plane and plots a point where
|p(κ)| < 1. (Code available on request.) The routine produces this figure

2

3 Ritz Method

4 Finite Differences

3

5 Local Truncation Error of the Crank Nicolson Method

For the PDE ut = uxx, the Crank-Nicolson Method is defined as :

(1 + r)Un+1
m − r

2
(Un+1

m+1 + Un+1
m−1) = (1− r)Unm +

r

2
(Unm+1 + Unm−1)

Where r = k/h2. To calculate the local truncation error, we set this equal to zero and replace the
approximate values with exact values.Then we take the Taylor Expansion, expanding about u(xm, tn)

(1 + r)

(
u+ kut +

1

2
k2utt +

1

6
k3uttt

)
(1)

−r
2

(
u+ hux + kut +

1

2
h2uxx + hkuxt +

1

2
k2utt +

1

2
h2kuxxt +

1

2
hk2uxtt

)
(2)

−r
2

(
u− hux + kut +

1

2
h2uxx − hkuxt +

1

2
k2utt +

1

2
h2kuxxt −

1

2
hk2uxtt

)
(3)

−(1− r)u (4)

−r
2

(
u+ hux +

1

2
h2uxx +

1

6
h3uxxx

)
(5)

−r
2

(
u− hux +

1

2
h2uxx −

1

6
h3uxxx

)
(6)

If we cancel, and collect terms we have

ut (k + rk − rk)

+ utt

(
1

2
k2 +

1

2
rk2 − 1

2
rk2

)

+ uxx

(
−1

2
rh2 − 1

2
rh2

)

+ uxxt

(
−1

2
rh2k

)

+ uttt

(
1

6
k3 +

1

6
rk3

)

After applying the facts ut = uxx and r = k/h2, we are left with

uttt

(
1

6
k3(1 +

k

h2
)

)

Notice that all the terms in (2),(3),(5),(6) canceled. We need to look at more terms to get a handle on
the error. Since all terms in (2) and (3) with odd powers of h will cancel, we will only look at those
with even powers. Then for the Taylor expansion we get

(1 + r)
1

6
k3uttt (7)

− r

(
1

6
k3uttt +

1

24
h4uxxxx +

1

4
k2h2uxxtt

)
(8)

− r
1

24
h4uxxxx (9)

Then we apply the identity uttt = uxxtt and r = k/h2 to get

−1

12

(
k3uttt + kh2uxxxx

)
+H.O.T.

Which gives us an LTE of O(k3 + kh2).

4

6 Stab of Crank Nicolson

7 Stab of Douglas

5

8 More on the Douglas Formula

To show that the Douglas formula does not come from applying a LMM to the method of lines, we
look at the one stage LMM

yn+1 − yn = h(β0fn + β1fn+1)

If we translate this to the method of lines where we advance in time, we get

Un+1
m − Unm =

k

h2

[
β0

(
Unm−1 − 2Unm + Unm+1

)
+ β1

(
Un+1
m−1 − 2Un+1

m + Un+1
m+1

)]
(10)

Keep in mind that the factor 1/h2 comes from the difference approximation. It is clear that if we pick
β0 = β1 = 1/2, we get the Crank-Nicolson formula. What we have to show is that, for the Douglas
formula, there are no β values that are independent of r = k/h2. The Douglas formula is given as

Un+1
m − 1

2

(
r − 1

6

)(
Un+1
m−1 − 2Un+1

m + Un+1
m+1

)
= Unm +

1

2

(
r +

1

6

)(
Unm−1 − 2Unm + Unm+1

)
(11)

If we rewrite this so that it looks more like the LMM version, we get

Un+1
m − Unm =

1

2

(
r +

1

6

)(
Unm−1 − 2Unm + Unm+1

)
+

1

2

(
r − 1

6

)(
Un+1
m−1 − 2Un+1

m + Un+1
m+1

)
(12)

We could again rewrite this to

Un+1
m − Unm =

1

2

[(
r +

1

6

)(
Unm−1 − 2Unm + Unm+1

)
+

(
r − 1

6

)(
Un+1
m−1 − 2Un+1

m + Un+1
m+1

)]
(13)

This would mean that β0 = r + 1/6 and β1 = r − 1/6, since none of the β are independent of r, the
Douglas formula cannot be thought of as a LMM applied to the method of lines.

6

9 Numerical Comparison

Here we are to solve
ut = uxx

subject to the initial value condition

u(x, 0) = sinx for x ∈ [0, π]

and the boundary conditions

u(0, t) = u(π, t) = 0 for all t ≥ 0

Using the Douglas formula and the Crank-Nicolson method. We accomplished this using Python along
with the NumArray library to solve the linear systems (code available upon request). We have prepared
a table that lists the number of time steps n, the theoretical solution (given by u(x, t) = e−t sinx), the
value for each method followed by the error at the midpoint.

N True Solution
Crank-Nicolson

Error
Douglas

1 0.99449791563
0.994509174613 1.12589828036e-05
0.994497915643 1.36470834633e-11

2 0.989026104192
0.989048498389 2.23941966252e-05
0.989026104219 2.71438427291e-11

4 0.978172634773
0.978216932165 4.42973915895e-05
0.978172634827 5.369227285e-11

8 0.956821703419
0.956908366374 8.6662954748e-05
0.956821703524 1.05040198761e-10

16 0.915507772134
0.915673621636 0.000165849502438
0.915507772335 2.01009653367e-10

80 0.643146895793
0.643729655705 0.000582759912498
0.643146896499 7.06048997046e-10

160 0.413637929568
0.414387869634 0.000749940066547
0.413637930476 9.0818685905e-10

320 0.171096336777
0.1717173065 0.000620969722957
0.171096337528 7.51321088677e-10

640 0.0292739564585
0.0294868333516 0.000212876893091
0.0292739567156 2.57096528095e-10

800 0.0121088187398
0.0122189860548 0.000110167315077
0.0121088188727 1.32931096686e-10

We need to mention here that getting the values at the midpoint was a little tricky. When we discritize
in x, we get a list of function values for each of these points. For this problem, this means a function
value for xm = 0, 1, 2, . . . , 20. Since we are given the values along the boundary, we can throw out the
conditions on the end, giving us values xm = 1, 2, . . . , 19. When we calculate the true solution in the
middle, we set x = 10h, since 10 is the middle value. However, when we look at the middle value in
our array, this corresponds to position 9. This gets a little tricky at times. It is good to bear in mind
that we should really look for the maximum error on this interval and that looking just at the middle
value is laziness on our part.

It is also interesting to note is how well the Douglas formula performs. By applying methods based
solely on the PDE, we gain an increase in accuracy on the order of 10−7. This is a significant increase
above the Crank Nicolson method. Since both methods are equally difficult/easy (depending on your
point of view) to implement, there is no reason to use the Crank Nicolson method.

7

10 Shooting

The main point of Shooting methods is to take a boundary value problem, which is typically difficult
to solve, and replace it with an initial value problem, which is easier to solve. In our case, we will solve
the boundary value problem

y′′ = y y(−1) = y(1) = 1

Which we then turn into the initial value problem

y′′ = y y(−1) = 1 y′(−1) = η

Where η is unknown. We have an implementation (in Python) that will compute the solution of this
IVP using Euler’s method (with h = 1/50), as a function of η. In order to find a good value for η, we
define the function

F (η) = y(1, η)− 1

This equation is the difference between the solution we want and the solution we get using Euler’s
method. Then we want to solve for 0 using bisection method. (Remembering that y(1, η) is found
using our implementation of Euler’s method.) For bisection, we need to find two values that bracket
the root of our function F (η). We do this, more or less, by hand. To begin with, we iterate over the
interval [−1, 1] by steps of 0.1 and get the values

η F (η)
-1.0 -0.867380444105
-0.9 -0.511779115987
-0.8 -0.156177787869
-0.7 0.199423540248
-0.6 0.555024868366
-0.5 0.910626196484
-0.4 1.2662275246
-0.3 1.62182885272
-0.2 1.97743018084
-0.1 2.33303150896
0 2.68863283707
0.1 3.04423416519
0.2 3.39983549331
0.3 3.75543682143
0.4 4.11103814955
0.5 4.46663947766
0.6 4.82224080578
0.7 5.1778421339
0.8 5.53344346202
0.9 5.88904479013

To illustrate how shooting works, we take a set of solutions, say the ones for η = −1,−0.9, . . . ,−0.5
and plot them along with the numerical solution.

8

We can use the values in our table to determine a bracket for bisection. Using SciPy’s bisection
method on the bracket −0.8,−0.7 we, find the approximate value of η = −0.756080651134. If we plot
the solution given by Euler’s method by itself, using h = 1/50, we get this plot

The true solution is given by

y(x) =
ex+1 + e1−x

e2 + 1

If we plot the true solution along with our approximated solution, we get

9

There is virtually no difference between the true solution and the approximated one. It is interesting to
note that we are essentially relying on the accuracy of both Euler’s method and the bisection method,
therefore, we don’t have to do any extra error analysis as our results are as good as the methods we
choose. For example, we could use more accurate methods or different methods altogether. (Code
available upon request.)

10

