Homework 3

Haimanot Kassa, Jeremy Morris & Isaac Ben Jeppsen

October 27, 2004

Exercise 1 : We can say that
lzll = llz =y + yll

]l < llz = yll + llyll

]l = Iyl < llz = yll

And likewise
lyll = lly — z + |

Iyl < lly =zl + [|=]

lyll = ]l < lly — =]
So we get

[zl = | < lle =yl

Exercise 2 : (An Induced Matrix Norm.) Let A be a real n x n matrix.
Show that:

n
[A]lx = ;_max n; |agj]-
1=

Hint: Use the definition of the induced matrix norm:

[A[l1 = max |[Az];.

llzf[1=1

Answer: let

n
i = ||
j=1



then

n n n n
Azl =Y 1> aisl <D0 laijllzl.

i=1 j=1 i=1 j=1

Changing the order of summation, we can separate the summands,

n n
JAz(ly <> Jag )

j=1i=1

let

n

c= lr%l]agnz |ai;] (1)

i=1

then
[Az[1 < cllz]lx
and thus
[AllL <c

to show this as an equality, we demonstrate an z for which

Azl _

Izl

let k£ be the column index for which the maximum in (1) is attained. Let
& = ey, the k' unit vector. Then ||z||; = 1 and

n n n
1Al =D 1Y aijegl =D lai] = ¢
=1 j:l =1

This proves that for the vector norm | - ||, the operator norm is

n
Al = s 3
4] = max 1\%\
1=

Exercise 3 : An induced norm is defined as

[A[l = max [[Az]
=1



if we let A = I,, then

n n
JAle = 1le = | 3> a2 = VITTF - F1 = Vi

i=1 j=1

but
JAl = 1)l = meax | Za]| = max [lz] = 1
[lz[|=1 [lz[|=1

Since HmHaX ||Az|| # |Az||F the Frobenius norm is not an induced norm.
z||=1

Exercise 4 : Does the spectral radius itself define a norm? Why or why
not? Answer. As we have seen it in class, for an arbitrary square matrix A,

ro(4) < || A (2)

Moreover, if ¢ > 0 be given, then there is an operator matrix norm, for
which

||A||€ < TO'(A) +e€ (3)

This shows that r,(A) is almost a matrix norm. But notice that it does not
satisfy all the norm properties. For example ||A| = 0 <> A = 0 but this is
not neccessarly true for spectral radius of a matrix. Take this example:

o)
s o] o

The spectral radius of A is 0, but A is not the zero matrix.

Exercise 5 : Derivation: Given Az = b we want to obtain an approximation
Z to z, & # x. This leads to

lell = [z — |

llell

( relative error)
]l

Which leads to the following set of equations:

Az=0b | = | (bl <|Alll=] | (1)
Ab== | — | [l=] < [[AZ"[[Ibll | (2)
Ae=r | = | lrl<lAllel | (3)
A r=c | = [ lel <A | (4)




Dividing the smaller side of (4) by the larger side of (1), and the larger side
of (4) by the smaller side of (1) gives

el 1y Il
< [[A[A™ o
] 1]
Similarly with (2) and (3):
Il lAlle]

[A=Yloll = =
Which leads to
1 ]l llel

TATTATT T8l —\|| A~ e
TAIJA= 1B~ fl=]

[l
1]

In general this inequality can be shown to be sharp trivialy by definition.
That is given
JA]l = max || Az]]
llz(|=1

By definition, there is some z such that
bl = Az = [[A][ll=]

Similarly for equations (2),(3),(4). Therefore there is some x such that for
the right hand side we have

1A |l [IBll H || HbH

And for the left hand side we have:

Alllle
W;H _ IAlell 1” rll _ el (i
A= o] ]l A=Al el
a) For the more specific case of || - |2

Using SVD || Az||2 = ||b]| becomes:

lAzll2 = |UZV x|

Let z = v; then

|Az|)% = |[USVT w2 = (UsVT0) T (USVT0) = o] VETUTUSV 0y



Since U and V are orthogonal this becomes
T = |2
By definition of the induced matrix norm this becomes
:

n
IZ) = max [[Sefzor|Sls = max |/ £ o
[lz[|2=1 [lz[|2=1V i=1

Since by definition 0; = max(0;), And since ||z]2 = 1.

|Xz]|s = 01 ma Z 2 =

ll=[[2=1 K

Similarly for |A~'r| = ||e|| letting x = u; yields:

n
47 e = ATl = VS 07 = 0! max, [ £ 07 = 0,
z|l2=1 =

Similar steps for equations (2) and (3) yield

Ar=b [= ] Pl=]4sk =oielz | La)

Ao=a | = | ol = A W =0, Pz | 2a)

Ade=r | = | |lrll=lAel =ouflela | (3.a)

Alr=e | = |l =[[A""r[[=0, |rll2 | (4.2)

Which gives for the right hand side:

lell _ o Il
[zl o [0l
and for the left hand side:
Il _ el
ooy bl Il

Therefore the inequality is sharp when A is a diagonal matrix.
b) For |- ||
By definition:

n n
Al = max | Azl = maxd oz, < maxy Jas| = o
j=1 j=1

7=1



Supposing that the max row sum is obtained in the £ row, pick x to be
+1 based on the signs of this &*"-row.

Given this z the inequality (i) becomes an equality

Av=b | = | bl = max | Arc= 3 axs| = 3 | (La)
z||= j=1

n
A= | = | o] = max A7l = S la| = p | (2)
]:

[1b][=1
mn
de=r ||l = max|del=Y oy =5 | (3a)
el|l= j=1

n
Atr=c| > | el = max |4 o= o) | = p | (42)

And thus, for the right hand side:

le]| [l
gyt
2] 0]l
And for the left hand side:
Il el
pllbll iz

Exercise 6 : General case A is the Hermitian (complex symmetric matrix)
i) If A= A* then
(Az,z) = (2, Az) = (2, Az) = (Az, )
so (Ax,z) is real

1) If Az = Az, then (Ax,z) = (Az,z) = Az, z). Since (Az,x) and (z,z)

are real A must be real.



It follows directly that A = A’ is a special case of this. Therefore, the
eigenvalues of A are real.

Exercise 7 : Let A be an eigenvalue of AeA™". Show that there exists an
ie{l,2,....,n}

such that

n

Jaii — Al < Jagj]

7j=1

J#i
Proof: Let z; be the component of largest magnitude of one of the eigenvec-
tors of A. From the ith equation of the system (A — A\I)z = 0, we have

n

(aii — N)zx; = fZaijmj

i=1
i

Which leads to:

n n

laii — A| < Z|aij\ ||§]|| < Z|aij|

=1 A

J#i J#i

Let S be a set that is the union of £ < n Gershgorin circles s.t. the intersec-
tion of S with all other Gershgorin circles is empty. Show that S contains
precisely k eignvalues of A (counting multiplicities) Let k& = n, this implies
that A is a diagonal matrix, A = D, This yields n circles centered about the
diagonal entries of a;; with radius 0.
Give an example showing that on the other hand there may be Gershgorin
circles that contain no eigenvalues of A at all. Let:

(4 4)

The eigenvalues for this matrix are A = 1.3908...,0.3596 ... which are both
outside the circle of radius 0.25 centered at 1.

NOTE:

A woman by the name of Olga Taussky Todd was famous for using this the-
orem and worked with the flutter group to help build more efficient aircrafts
during WWII. The flutter speed is extremely important to an aircrafts mak-
ing and must be carefully calculated for it to be able to get off the ground.

=00 -



Olga found a more simplified way to find these calculations by finding the
eigenvalues and eigenvectors using the Gershgorin Theorem. “Still; matrix
theory reached me only slowly,” Taussky noted in a 1988 article in the Amer-
ican Mathematical Monthly. “Since my main subject was number theory, 1
did not look for matrix theory. It somehow looked for me.” (IvarsP Peter-
son’s MathTrek).

Exercise 8 : Let A € R™*! and B € R"*" and show that if we use parti-

tioned matrices
Ay Agg ) ( Bi1 By )
A= B =
( Ax Aa By B
Where A;; € R™i*ki and B;; € R!*7 . Then the matrix product can be
computed using:

AB — < An B+ A1gByr AnBig + A19By )
A1 Bi1 + AeBy1 A1 Big + A2 Ba

To show this, we will take the statement for the upper left block matrix AB

and expand it:

ll l2

(AB)i; = > (a1)i(di)rj + > (a12)ik(ba1)k; (5)

k=1 k=1

Which can be written in terms of the original matrices A and B

ll l1+l2
> aikbii+ Y aib (6)
k=1 k=l +1

And we can combine these sums by writing

l1+12
> by (7)
k=1
In general we can write
n
(AB)ij = ) A By; (8)
k=1

where n is the number of row matrices of A and the number of column
matrices of B. And if A € R™*! with sub-matrices Aij € R™i*li where



li+1lo+...4+1, =1and, s, j refer to the appropriate matrices.

Exercise 9 :
a. False. By definition, the determinant is the sum of all possible products
where we pick an element from each row and column of the matrix. This
means that if we take a matrix A € R***, that we should have (j) =24
products to sum. However, by this method we only get 8.
det (A) = det (AH) det (A22) — det (A12) det (Agl)
= 011022033044 — (11022034043 — 012021033044 + 012021034043

—013024031042 1 013024032041 + 14023031042 — 01402303204]

Notice that there are only two terms with the coefficient a1, if we compute
the determinant using the minor expansion, we should have six such terms.

b. False, take the matrix

1 00
010
A= 0 2 1
0 4 0
Where we have sub-matrices
B=[1 0]

Then we have rank(B) + rank(D) = 2 but rank(A) = 3. This statement
could be true if rank(B) = rank(C).

Exercise 10 : To count the number of multiplications and divisions in
the Cholesky decomposition, we use the equations derived in the book for
finding the individual elements of the matrix L

j—1
aij — Y liklji

k=1
lij = I
ii



i1 1/2
2
lis = |ai — Z ik
k=1

The number of divisions can be seen from the first equation, there are divi-
sions for every element below the diagonal. This is

n2——n

2

To get the number of multiplications we notice that we need the double sum

n—1n—1

2.2 n—i

i=1 j=i

Using a method similar to the one used in the notes, we approximate this
expression with integrals to get the number of multiplications

n—1 n—1
1 1 2
/1 /Z (n—j)djdi 6n 2n —|—3

For the case when 7 = j, we use the second equation to get the sum

n 2

. n L ..on 1
Stn=i)~ [n=i)di= ot

i=1

When we approximate using integrals, the leading term is the only one that
is important. Therefore, we see that the Cholesky decomposition is of order

n3

6

10



