
Homework 3Haimanot Kassa, Jeremy Morris & Isaac Ben JeppsenOctober 27, 2004Exercise 1 : We can say thatkxk = kx� y + ykkxk � kx� yk+ kykkxk � kyk � kx� ykAnd likewise kyk = ky � x+ xkkyk � ky � xk+ kxkkyk � kxk � ky � xkSo we get ���kxk � kyk��� � kx� ykExercise 2 : (An Induced Matrix Norm.) Let A be a real n x n matrix.Show that: kAk1 = maxj=1;2;:::;n nXi=1 jaij j:Hint: Use the de�nition of the induced matrix norm:kAk1 = maxkxk1=1 kAxk1:Answer: let kxk1 = nXj=1 jxj j1



then kAxk1 = nXi=1 j nXj=1 aijxjj � nXi=1 nXj=1 jaij jjxj j:Changing the order of summation, we can separate the summands,kAxk1 � nXj=1 nXi=1 jaij jjxj j:let c = max1�j�n nXi=1 jaij j (1)then kAxk1 � ckxk1and thus kAk1 � cto show this as an equality, we demonstrate an x for whichkAxk1kxk1 = clet k be the column index for which the maximum in (1) is attained. Letx = ek, the kth unit vector. Then kxk1 = 1 andkAk1 = nXi=1 j nXj=1 aijxjj = nXi=1 jaikj = cThis proves that for the vector norm k � k, the operator norm iskAk1 = max1�j�n nXi=1 jaij jExercise 3 : An induced norm is de�ned askAk = maxkxk=1 kAxk2



if we let A = In thenkAkF = kIkF =vuut nXi=1 nXj=1 a2ij = p1 + 1 + : : :+ 1 = pnbut kAk = kIk = maxkxk=1 kIxk = maxkxk=1 kxk = 1Since maxkxk=1 kAxk 6= kAxkF the Frobenius norm is not an induced norm.Exercise 4 : Does the spectral radius itself de�ne a norm? Why or whynot? Answer. As we have seen it in class, for an arbitrary square matrix A,r�(A) � kAk (2)Moreover, if " > 0 be given, then there is an operator matrix norm, forwhich kAk" � r�(A) + " (3)This shows that r�(A) is almost a matrix norm. But notice that it does notsatisfy all the norm properties. For example kAk = 0 $ A = 0 but this isnot neccessarly true for spectral radius of a matrix. Take this example:A = 24 0 0 01 0 02 3 0 35 (4)The spectral radius of A is 0, but A is not the zero matrix.Exercise 5 : Derivation: Given Ax = b we want to obtain an approximationex to x, ~x 6= x. This leads to kek = k~x� xkkekkxk ( relative error)Which leads to the following set of equations:Ax = b ! kbk 6 kAkkxj (1)A�1b = x ! kxk 6 kA�1kkbk (2)Ae = r ! krk 6 kAkkek (3)A�1r = e ! kek 6 kA�1kkrk (4)3



Dividing the smaller side of (4) by the larger side of (1), and the larger sideof (4) by the smaller side of (1) giveskekkxk 6 kAkkA�1kkrkkbkSimilarly with (2) and (3): krkkA�1kkbk 6
kAkkekkxkWhich leads to 1kAkkA�1k krkkbk 6

kekkxk 6 kAkkA�1kkrkkbkIn general this inequality can be shown to be sharp trivialy by de�nition.That is given kAk = maxkxk=1kAxkBy de�nition, there is some x such thatkbk = kAxk = kAkkxkSimilarly for equations (2),(3),(4). Therefore there is some x such that forthe right hand side we havekekkAkkxk = kA�1kkrkkbk or kekkxk = kAkjA�1kkrkkbkAnd for the left hand side we have:krkkA�1kkbk = kAkkekkxk or krkkA�1kkAkkbk = kekkxk (i)a) For the more speci�c case of k � k2 :Using SVD kAxk2 = kbk becomes:kAxk2 = kU�V TxkLet x = v1 thenkAxk22 = kU�V T v1k22 = (U�V T v1)T (U�V T v1) = vT1 V �TUTU�V T v14



Since U and V are orthogonal this becomes�T� = k�k2By de�nition of the induced matrix norm this becomesk�k2 = maxkxk2=1k�xk2ork�k2 = maxkxk2=1r n�i=1�2i x2iSince by de�nition �1 = max(�i), And since kxk2 = 1.k�xk2 = �1 maxkxk2=1r n�i=1x2i = �1Similarly for kA�1rk = kek letting x = ui yields:kA�1rk2 = kATuik2 = kV ��1UT k2 = ��1n maxkxk2=1r n�i=1x2i = ��1nSimilar steps for equations (2) and (3) yieldAx = b ! |kbk = kAxjj2 = �1kxk2 (1.a)A�1b = x ! kxk = kA�1bk = ��1n kbk2 (2.a)Ae = r ! krk = kAek = �1kek2 (3.a)A�1r = e ! kek = kA�1rk = ��1n krk2 (4.a)Which gives for the right hand side:kejjkxk = �1�n krkkbkand for the left hand side: krk�1��1n kbk = kekkxkTherefore the inequality is sharp when A is a diagonal matrix.b) For k � k1By de�nition:kAk1 = maxkxk=1kAxk1 = maxi nXj=1jaijxjj 6 maxi nXj=1jaij j = nXj=1jakjj5



Supposing that the max row sum is obtained in the kth row, pick x to be�1 based on the signs of this kth-row.x = 0BB@ +�1+�1: : :+�1 1CCAGiven this x the inequality (i) becomes an equalityAx = b ! |kbk = maxkxk=1kAxjj1= nPj=1jakjj = � (1.a)A�1b = x ! kxk = maxkbk=1kA�1bk1 = nPj=1ja�1kj j = � (2.a)Ae = r ! krk = maxkek=1kAek= nPj=1jakj j = � (3.a)A�1r = e ! kek = maxkrk=1kA�1rk1= nPj=1ja�1kj j = � (4.a)And thus, for the right hand side:kejjkxk = ��krkkbkAnd for the left hand side: krk��kbk = kekkxkExercise 6 : General case A is the Hermitian (complex symmetric matrix)i) If A = A� then hAx; xi = hx; �Axi = hx;Axi = hAx; xiso hAx; xi is realii) If Ax = �x, then hAx; xi = h�x; xi = �hx; xi. Since hAx; xi and hx; xiare real � must be real. 6



It follows directly that A = AT is a special case of this. Therefore, theeigenvalues of A are real.Exercise 7 : Let � be an eigenvalue of A�Anxn. Show that there exists ani 2 f1; 2; : : : :; ngsuch that jaii � �j 6

nX jaijjj=1j 6=iProof: Let xi be the component of largest magnitude of one of the eigenvec-tors of A. From the ith equation of the system (A� �I)x = 0, we have(aii � �)xi = � nXj=1j 6=iaijxjWhich leads to: jaii � �j 6

nXj=1j 6=i jaijj jxj jjxij 6

nXj=1j 6=i jaijjLet S be a set that is the union of k 6 n Gershgorin circles s.t. the intersec-tion of S with all other Gershgorin circles is empty. Show that S containsprecisely k eignvalues of A (counting multiplicities) Let k = n, this impliesthat A is a diagonal matrix, A = D, This yields n circles centered about thediagonal entries of aii with radius 0.Give an example showing that on the other hand there may be Gershgorincircles that contain no eigenvalues of A at all. Let:A = � 1 114 34 �The eigenvalues for this matrix are � = 1:3908 : : : ; 0:3596 : : : which are bothoutside the circle of radius 0.25 centered at 1.NOTE:A woman by the name of Olga Taussky Todd was famous for using this the-orem and worked with the 
utter group to help build more e�cient aircraftsduring WWII. The 
utter speed is extremely important to an aircrafts mak-ing and must be carefully calculated for it to be able to get o� the ground.7



Olga found a more simpli�ed way to �nd these calculations by �nding theeigenvalues and eigenvectors using the Gershgorin Theorem. \Still, matrixtheory reached me only slowly," Taussky noted in a 1988 article in the Amer-ican Mathematical Monthly. \Since my main subject was number theory, Idid not look for matrix theory. It somehow looked for me." (IvarsP Peter-son's MathTrek).Exercise 8 : Let A 2 R
m�l and B 2 R

l�n and show that if we use parti-tioned matrices A = � A11 A12A21 A22 �B = � B11 B12B21 B22 �Where Aij 2 R
mi�lj and Bij 2 R

li�nj . Then the matrix product can becomputed using:AB = � A11B11 +A12B21 A11B12 +A12B22A21B11 +A22B21 A21B12 +A22B22 �To show this, we will take the statement for the upper left block matrix ABand expand it:(AB)ij = l1Xk=1(a11)ik(b11)kj + l2Xk=1(a12)ik(b21)kj (5)Which can be written in terms of the original matrices A and Bl1Xk=1 aikbkj + l1+l2Xk=l1+1 aikbkj (6)And we can combine these sums by writingl1+l2Xk=1 aikbkj (7)In general we can write (AB)ij = nXk=1AîkBkĵ (8)where n is the number of row matrices of A and the number of columnmatrices of B. And if A 2 R
m�l with sub-matrices Aij 2 R

mi�lj where8



l1 + l2 + : : :+ ln = l and, î, ĵ refer to the appropriate matrices.Exercise 9 :a. False. By de�nition, the determinant is the sum of all possible productswhere we pick an element from each row and column of the matrix. Thismeans that if we take a matrix A 2 R
4�4, that we should have �44� = 24products to sum. However, by this method we only get 8.det (A) = det (A11) det (A22)� det (A12) det (A21)= a11a22a33a44 � a11a22a34a43 � a12a21a33a44 + a12a21a34a43�a13a24a31a42 + a13a24a32a41 + a14a23a31a42 � a14a23a32a41Notice that there are only two terms with the coe�cient a11, if we computethe determinant using the minor expansion, we should have six such terms.b. False, take the matrix A = 2664 1 0 00 1 00 2 10 4 0 3775Where we have sub-matrices B = � 1 0 �C = 24 0 10 20 4 35D = 24 010 35Then we have rank(B) + rank(D) = 2 but rank(A) = 3. This statementcould be true if rank(B) = rank(C).Exercise 10 : To count the number of multiplications and divisions inthe Cholesky decomposition, we use the equations derived in the book for�nding the individual elements of the matrix Llij = aij � j�1Xk=1 likljkljj9



lii = "aii � i�1Xk=1 l2ik#1=2The number of divisions can be seen from the �rst equation, there are divi-sions for every element below the diagonal. This isn2 � n2To get the number of multiplications we notice that we need the double sumn�1Xi=1 n�1Xj=i n� jUsing a method similar to the one used in the notes, we approximate thisexpression with integrals to get the number of multiplicationsZ n�11 Z n�1i (n� j) dj di = 16n3 � 12n2 + 23For the case when i = j, we use the second equation to get the sumnXi=1(n� i) � Z n1 (n� i) di = n22 � n+ 12When we approximate using integrals, the leading term is the only one thatis important. Therefore, we see that the Cholesky decomposition is of ordern36
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