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Exercise 1 : It appears that the Taylor expansion approximates the func-
tion f(x) = ex quite well. In fact the more terms you add, the better the
approximation gets. This is not the case for g(x) = ln (x+ 1). The Taylor
expansion approximates the function quite well on the interval (0, 1), but
does not everywhere else. See figures 1 and 2 at the back of this report.

Exercise 2 : Since F is a linear function where F : Rn → Rm, then we can
write:

F (~x) = F (~e1x1 + ~e2x2 + . . .+ ~enxn)

= x1F (~e1) + x2F (~e2) + . . .+ xnF (~en)

=




| | |
F (~e1) F (~e2) . . . F (~en)
| | |







x1

x2
...
xn


 = A~x

Where ~ei ∈ Rm and A ∈ Rm×n.

Exercise 3 : We have the following functions with their associated matrices:

F : Rp → Rm A ∈ Rm×p
G : Rp → Rn B ∈ Rp×n
H : Rn → Rm C ∈ Rm×n

With the definition that H(~x) = F (G(~x)). And we want to show that
H(~x) = C~x where C = AB.
Proof: We need to be able to say that if C~x = ~z, then the ith component
of ~z is :

zi =
n∑

j=1

cijxj =
n∑

j=1

p∑

k=1

aikbkjxj
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We start by doing the product G(~x) = B~x = ~y:

~y = ~b1x1 +~b2x2 + . . .+~bnxn

Where ~bi is the ith column of B. This gives us the following for the compo-
nents of ~y

yi =
n∑

j=1

bijxj ~y ∈ Rp

Then we do F (~y) = ~z and we get

~z = ~a1y1 + ~a2y2 + . . .+ ~anyn

Where ~ai is the ith column of A. We again solve for the components of ~z
just as we did for ~y

zi =
n∑

j=1

aijyj ~z ∈ Rm

Now, when we plug in for yj we get:

zi =

p∑

j=1

aij

n∑

k=1

bjkxk =

p∑

j=1

n∑

k=1

aijbjkxk

We could use up a lot of paper, but instead we’ll skip a few steps and show
that we can write this equation as:

zi = x1

(
p∑

k=1

aikbk1

)
+ x2

(
p∑

k=1

aikbk2

)
+ . . .+ xn

(
p∑

k=1

aikbkn

)

Which, thankfully, we can write as:

zi =
n∑

j=1

p∑

k=1

aikbkjxj

And we are done!

Exercise 4 : If a matrix A ∈ Rn×n is positive definite, then we know that
for every vector ~x ∈ Rn, where ~x 6= 0, we get the condition that ~xTA~x > 0.
And we have to show that every principle submatrix A{I} is also positive
definite. The matrix A{I} is obtained by picking a set I ⊂ {1, 2, . . . , n} and
crossing out all rows and columns whose indices are not in I.
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Proof: We are given that A is positive definite for all vectors ~x ∈ (R)n.
Then we can define the vector

~x′ =
∑

i∈I
αiei

For scalar constants αi and ei are the unit vectors in Rn. Then we can say
that for the principle submatrix A{I} that

~yTA{I}~y = ~x′
T
A~x′ > 0

For all vectors ~y ∈ Rk. And all principal submatrices of A are positive defi-
nite if A is positive definite.

Exercise 5 : To compute the factorization A = UL where U is upper
triangular with 1s along the diagonal and L is lower triangular, we define
the matrices U and L in the following way:

for i = (n− 1) . . . 1
for k = (i+ 1) · · · 1

Uik = aik/akk
for j = 1 · · · k

Lij = aij − akjUik
Adding the requirement that Uii = 1 (since the algorithm above does not
define them). Then, if we are trying to solve the system A~x = ~b, we apply
backward substitution to ~b by doing the following calculations:

for i = (n− 1) · · · 1
for j = 1 · · · i

bi = bi − bjuij
Then we use forward substitution with L to find ~x. This is done in the
following way:

xi =

bi −
n∑

j=k+1

xjlij

lii
for i = n, n− 1, . . . , 1
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Exercise 6 :
part a. We say that the function f has a root α of multiplicity p > 1 if

f(x) = h(x)(x− α)p (1)

Where h(α) 6= 0 and h(x) is continuous at x = α. If h(x) is sufficiently
differentiable at x = α, then we have

f(α) = f ′(α) = . . . = f (p)(α) = 0, f (p)(α) 6= 0

Newton’s method is defined as

xn+1 = g(xn) g(x) = x− f(x)

f ′(x)
x 6= α (2)

To show that Newton’s method converges linearly, we need |g′(α)| < 1.
Before calculating g′(α), we use 1 to get

g(x) = x− (x− α)h(x)

ph(x) + (x− α)h′(x)

Taking the derivative, we get

g′(x) = 1 − ((x− α)h′(x) + h(x))(ph(x) + (x− α)h′(x))

(ph(x) + (x− α)h′(x))2

− (ph′(x) + (x− α)h′′(x) + h′(x))(h(x)(x− α))

(ph(x) + (x− α)h′(x))2

And for g′(α) we get

g′(α) = 1− ph(α)

p2h(α)2
= 1− 1

p

Since p > 1 we get that Newton’s method converges linearly with a rate of
convergence of (p− 1)/p.
part b. To show that the modification of Newton’s method

xn+1 = g(xn) g(x) = x− p f(x)

f ′(x)
x 6= α (3)

converges quadratically, we need to show that |g′(α)| = 0. Following the
same method as before, we use 1 to find g′(x) and then we plug in α.

g(x) = x− p (x− α)h(x)

ph(x) + (x− α)h′(x)
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Then we get the derivative

g′(x) = 1 − (ph(x) + ph′(x)(x− α))(ph(x) + h′(x)(x− α))

(ph(x) + (x− α)h′(x))2

− (ph′(x) + h′(x) + (x− α)h′′(x))(p(x− α)h(x))

(ph(x) + (x− α)h′(x))2

When we plug in α, we get

g′(α) = 1− (ph(x))2

(ph(x))2
= 1− 1 = 0

And we have proven that the new form 3 of Newton’s method converges
quadratically.

Exercise 7 : To find a linear function l(x) = ax+ b such that

F =

∫ 1

0
(ex − l(x))2 dx = min

Then we take the partial derivatives and set them to zero:

∂F

∂a
= 0 and

∂F

∂b
= 0

∂F

∂a
=

∫ 1

0

∂

∂a
(ex − ax− b)2 dx =

−a
3
− −b

2
+ 1 = 0

Solving for the partial of b we get:

∂F

∂b
=

∫ 1

0

∂

∂b
(ex − ax− b)2 dx =

e− a

2
− b− 1 = 0

And solving the system of equations for a and b:





a

3
+
b

2
= 1

a

2
+ b = e− 1
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We get

a =
6− 3(4e− 10)

2

b = 4e− 10

Then l(x) = ax+ b satisfies

F =

∫ 1

0
(ex − l(x))2 dx = min

Exercise 8 : Find a linear function l(x) = ax+ b such that

∫ 1

0
|ex − l(x)| dx = min

What we need to do in this case is minimize the area between the functions
l(x) and ex. So we define the function F as

F (α, β, a, b) =

∫ α

0
ex − ax− b dx+

∫ β

α
ax+ b− ex dx+

∫ 1

β
ex − ax− b dx

Then we need to set 5F = 0, and we get these equations

∂F

∂α
= 2eα − 2aα− b = 0

∂F

∂β
= aβ + 2b− 2eβ = 0

∂F

∂a
= α2 + β2 − 1

2
= 0

∂F

∂b
= −2α+ 2β − 1 = 0

Now, we can solve for the constants α, β, a, b. Since the values α and β are
the x values where l(x) and ex have the same y values, we can solve for α
and β using the partial derivatives for a and b, then use the point/slope
formula to find a and b. Using this method we get

α =

√
5− 1

4

β =

√
5 + 2

4
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If f(x) = ex, then we have the two points (α, f(α)), (β, f(β)). Solving for a
and b, we get

a =
f(β)− f(α)

β − α =
e2+
√

5/4 − e
√

5−1/4

2+
√

5
4 −

√
5−1
4

b = −a
(√

5− 1

4

)
+ e

√
5−1
4

Then the function l(x) = ax+ b minimizes

∫ 1

0
|ex − l(x)| dx

Exercise 9 : Find a function l(x) = ax+ b so that

f(x) = max
0≤x≤1

|ex − l(x)| = min

What we need to do is minimize the maximum distance between l(x) and
ex, the maximums occur at the points x = 0, x = 1, x = α, see figure 3 for
an explination of where these points are. Using the points x = 0 and x = 1,
we can get the value of a. We require that g(0) = g(1), where g(x) is the
distance between the functions ex and l(x). For x = 0 we get

|e0 − a(0)− b| = |1− b|

Setting this equal to the equation for x = 1, we have

|e1 − a(1)− b| = |1− b|

a = e− 1

To find α, we need to translate y = ax + b so that it becomes the tangent
line to ex.

y′ = ex = a = e− 1

x = ln e− 1 = α

Thus to find b, we have

|eα − aα− b| = |1− b|
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And take −(1− b) to get

b =
eα − aα+ 1

2

And our function l(x) = ax+ b minimizes f(x).

Exercise 10 : Meg’s problem here is that, for a general n × n system, we
will always have to inspect all n2 elements of the system.

Exercise 11 : The function f(x) = x(x+ 1)(x− 1) will cycle in Newton’s
method. That is xn+2 = xn, given we choose the correct starting value x0.

Exercise 12 : To begin, we consider the root finding problem

f(x) ≡ a− 1

x
= 0

For a given a > 0. Then we want to find the root of the left hand side, call
this α. We let a = 1/x be an approximate solution of this equation. At our
first approximation, (x0, f(x0)), we draw the tangent line to the graph y =
f(x) and let x1 be the point where this line intersects the x-axis. This will be
a better approximation to α. To find the equation for x1 we match the slope
of the line that goes through the two points (x0, f(x0)) to (x1, 0) and f ′(x0).
We get the equation

f ′(x0) =
f(x0)− 0

x0 − x1

Since we know f(x0) and f ′(x0) we can write

1

x2
0

=
a− 1/x0

x0 − x1

x0 − x1 = x2
0(a− 1/x0)

x1 = x0(2− ax0)

Then we can generalize this to get the iterative form

xn+1 = xn(2− axn)

If we want to know the rate of convergence and be able to determine how
sensitive to the choice of x0 this method is, then we define the residual to
be rn = 1− axn so that we get

xn+1 = xn(1 + rn)
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And then the error can be defined as

en =
1

a
− xn =

rn
a

To better analyze the rate of convergence, we notice that

rn+1 = 1− axn+1 = 1− axn(1 + rn) = 1− (1− rn)(1 + rn) = r2
n

And we see that en+1 can be defined as

en+1 =
rn+1

a
=
r2
n

a
=
e2
na

2

a
= ae2

n

Based on this, we can say that this method converges quadratically.

Exercise 13 : part a Show that A−1 = [xij ] where

xij =





(n+ 1− j)i
n+ 1

i = 1, 2, . . . , j

(n+ 1− i)j
n+ 1

i = j + 1, . . . , n

And

Aij =





2, i = j
−1 i = j − 1, i = j + 1
0 otherwise

We will show that AA−1 = I. If we let

Iij = cij =
n∑

k=1

aikxkj

We know, from the definition of A that we will get zeros in this sum, except
for three terms, so the sum becomes

Iij = cij =
i+1∑

k=i−1

aikxkj

Then we have five cases to consider
Case 1 (i = j)

cii = (−1)

(
(n+ 1− i)(i− 1)

n+ 1

)
+(2)

(
(n+ 1− i)i

n+ 1

)
+(−1)

(
(n+ 1− (i+ 1))i

n+ 1

)
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Then, to verify that this is 1, we expand to

cii =
−ni− i+ i2 + n+ 1− i+ 2ni+ 2i− 2i2 − ni+ i2

n+ 1

⇒ n+ 1

n+ 1
= 1

Case 2 (i = j + 1)

cij = (−1)

(
(n+ 1− j)(i− 1)

n+ 1

)
+(2)

(
(n+ 1− i)j

n+ 1

)
+(−1)

(
(n+ 1− (i+ 1))j

n+ 1

)

To verify, we substitute i = j + 1 and expand

cij =
−nj − j + j2 + 2nj − 2j2 = nj + j2 + j

n+ 1
= 0

Case 3 (i = j − 1)

cij = (−1)

(
(n+ 1− j)(i− 1)

n+ 1

)
+(2)

(
(n+ 1− j)i

n+ 1

)
+(−1)

(
(n+ 1− j)(i+ 1)

n+ 1

)

To verify, we substitute i = j − 1 and expand

cij =
−nj − j + j2 + 2n+ 2− 2j + 2nj + 2j − 2j2 − 2n− 2 + 2j − nj − j + j2

n+ 1
= 0

Case 4 (i > j + 1)

cij = (−1)

(
(n+ 1− (i− 1))j

n+ 1

)
+(2)

(
(n+ 1− i)j

n+ 1

)
+(−1)

(
(n+ 1− (i− 1))j

n+ 1

)

Then we expand this substituting i = j + c where c > 1

cij =
j(2(n− j − c+ 1)− (n− j + 2)− (n− j − c+ 2)

n+ 1
= 0

Case 5 (i < j − 1)

cij = (−1)

(
(n+ 1− j)(i− 1)

n+ 1

)
+(2)

(
(n+ 1− j)i

n+ 1

)
+(−1)

(
(n+ 1− j)(i+ 1)

n+ 1

)
= 0
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Then we expand this substituting i = j − c where c > 1

cij =
(n+ 1− j)(2(j − c)− (j − c− 1)− (j − c+ 1))

n+ 1
= 0

This completes the proof.
part bWe want to show that A = LU for the given definitions of L and U .
We make the note that to get Aij we do the following

aij =
n∑

k=1

likukj = li(i−1)u(i−1)i + liiuii

Case 1 (i = j)

aij =
−(i− 1)

i
(−1) +

i+ 1

i
(1) =

2i

i
= 2

Case 2 (i = j + 1)

aij =
−(i− 1)

i

(i+ 1)

i
=
−(j)

j + 1

(j + 1

j
= −1

Case 3 (i = j − 1)

I can’t seem to figure this one out, but it should = −1

Case 4 (i > j + 1) This is trivially 0
Case 3 (i < j − 1) This is also trivially 0
This completes the proof.
part cThe advantage of using either approach is that we do not have to store
any of those matrices. I would prefer to use the LU factorization, because
computing the elements of the inverse seems a lot more computationally
complex. We would be repeating a lot of calculations, making the inverse
the least desireable option. When using the LU factorization we are only
required to compute the elements of L and U once during the backwards
and forwards substitutions.

Exercise 14 : Let’s consider the function f(~x) = A~x− I~b. Then applying
Newton’s method, we get the iterative formula

~xn+1 = ~xn −
f( ~xn)

f ′(~xn)
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to get a sequence of vectors. If we would like to say that this sequence of
vectors is converging to something, then we will have to specify some criteria
for convergence. In other words, for Newton’s method to work, we will have
to take some norm of the vectors ~xn to determine if they are converging.
We would pick the norm that would be appropriate to our problem.

As usual, we would have to pick an initial approximation that is close
to the intended solution. If our matrix A does not have full rank, Newton’s
method may or may not converge.

Exercise 15 : Given |α− xn+1| ≤ cn|α− xn| and cn → 0 as n→∞, show

lim
n→∞

∣∣∣∣
α− xn

xn+1 − xn

∣∣∣∣ = 1

Proof : We will to show the following

1 ≤ lim
n→∞

∣∣∣∣
α− xn

xn+1 − xn

∣∣∣∣ ≤ 1

The right hand side proceeds as

|α− xn| ≤ |α− xn+1|+ |xn+1 − xn|

|α− xn| − |α− xn+1| ≤ |xn+1 − xn|
∣∣∣∣
α− xn

xn+1 − xn

∣∣∣∣−
∣∣∣∣
α− xn+1

xn+1 − xn

∣∣∣∣ ≤ 1

∣∣∣∣
α− xn

xn+1 − xn

∣∣∣∣− cn
∣∣∣∣
α− xn

xn+1 − xn

∣∣∣∣ ≤ 1 (4)

|α− xn|
|xn+1 − xn|

≤ 1

1− cn
= 1 (5)

Since cn → 0 as n→∞.
Then for the left hand side we have

|xn+1 − xn| ≤ |α− xn|+ |α− xn+1|

|xn+1 − xn| − |α− xn|︸ ︷︷ ︸
≤cn|α−xn|

≤ |α− xn+1|

|xn+1 − xn| ≤ |α− xn|(1 + cn)

|α− xn|(1 + cn) ≥ |xn+1 − xn|
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|α− xn
xn+1 − xn

≥ 1

1 + cn
= 1

Since cn → 0 as n→∞.

Exercise 16 : We will show that the algorithm Aitken converges quadrati-
cally. To do this we show that the equation

G(x) = x+
(g(x)− x)2

g(x)− x− g(g(x)) + g(x)
(6)

has the following properties, namely that G(α) = α and G′(α) = 0. We
define the function g(x) = α+ (x− α)h(x) for some function h(x) bounded
about x = α. And we know that g(α) = α and g′(α) 6= 0. Then to show
that G(α) = α, we find

G(α) = α+
(g − α)2

g − α− (g(g)− g)

Where g = g(x). Notice that this will give us an indeterminant form, since
g(α) = α we have

G(α) = α+
(α− α)2

α− α− (α− α)
= α+

0

0

So, we apply L’Hopital’s rule

G(x) = x+
−2(g − x)

2g′ − 1− g′(g)g′

And plug in for α

G(α) = α+
−2(g − α)

2g′ − 1− g′(g)g′

Notice that the denominator is something nonzero, in which case we have

G(α) = α+
0

2g′ − 1− g′(g)g′ 6= 0
= α

To show that G′(α) = 0, we substitute g(x) and get

G(x) = x+
((x− α)(h(x)− 1))2

(x− α)(h(x)h(g)− 1)

To make the notation a little simpler, we will specify that

δ(x) = ((x− α)(h(x)− 1))2
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ϕ(x) = (x− α)(h(x)h(g)− 1)

With derivatives

δ′(x) = 2((x− α)(h(x)− 1))
[
h′(x)(x− α) + (h(x)− 1)

]

ϕ′(x) = (h(x)h(g)− 1) + (x− α)(h′(x)h(g) + h(x)h′(g)g′)

Then we have that the derivative of G(x) is

G′(x) = 1 +
δ′ϕ− δϕ′

(ϕ)2

Notice that δ(α) = δ′(α) = ϕ(α) = 0 this is an indeterminant form at G′(α).
So we will again use L’Hopital’s rule to get

G′(x) = 1 +
δ′ϕ′ + δ′′ϕ− (δ′ϕ′ + δϕ′′)

2(ϕ)ϕ′
= 1 +

δ′′ϕ− δϕ′′
2ϕϕ′

From the previous calculations, we know that δ(α) = 0 and ϕ(α) = 0, giving
us another indeterminant form, so we use L’Hopital again

G′(x) = 1 +
δ′′ϕ′ − δ′ϕ′′

2(ϕ′)2
(7)

We would like to find δ′′(α) without having to go through all the work. So
we notice the following

δ′′ =

a︷ ︸︸ ︷
2(x− α)2

b︷ ︸︸ ︷
(h(x)− 1)

c︷ ︸︸ ︷
(h′(x)(x− α) + (h(x)− 1))

And note that
δ′′ = a′bc+ ab′c+ abc′

Since we will eventually be evaluating at α, the second two terms are
zero(because a(α) = 0). So we only need to find the first term. We find
this, and plug into 7, evaluating at α.

G′(α) = 1 +
2(h(α)− 1)2 − (2h(α)− h(α)2 − 1)

2(2h(α)− h(α)2 − 1)2

Which then gives us

G′(α) = 1 +
(h(α)− 1)2

2h(α)− h(α)2 − 1
= 1− 1 = 0

And we see that this algorithm converges quadratically.
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Figure 1: ex and it’s Taylor approximation
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Figure 2: lnx+ 1 and it’s Taylor approximation
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Figure 3: Plots for ex and l(x), problem 9
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