5.3 Conditional Probabilities

1. we have new notation for the conditional proportions (or probabilities) that we talked about in ch 3

$$P\{A|B\} = \frac{P\{A \text{ and } B\}}{P\{B\}}$$

- 2. we will use the new ideas from probability that we have learned to determine whether two events are independent or not.
- 3. example : school children rehash. we have the table of probabilities for $P\{A \text{ and } B\}$ where $A = \{\text{educational goals}\}$ and $B = \{\text{gender}\}.$

	Grades	Popular	Sports	Total
boy	0.245	0.105	0.125	0.475
girl	0.272	0.190	0.062	0.525
Total	0.517	0.295	0.188	1.000

then we have the table of conditional probabilities $P\{A|B\}$.

	Grades	Popular	Sports
boy	0.515	0.220	0.264
girl	0.518	0.363	0.120

4. we can also use conditional probabilities to determine whether two events are independent. we have

$$P\{A|B\} = \frac{P\{A \text{ and } B\}}{P\{B\}}$$
$$= \frac{P\{A\}P\{B\}}{P\{B\}} \qquad \text{(independence)}$$
$$P\{A|B\} = P\{A\}$$

- 5. example : return to school children
 - (a) let $A = \{\text{goal} = \text{Grades}\}$ and $B = \{\text{gender} = \text{Boy}\}$. are A and B independent?
 - (b) let $A = \{\text{goal} = \text{Popular}\}$ and $B = \{\text{gender} = \text{Boy}\}$. are A and B independent?
 - (c) let $A = \{\text{goal} = \text{Sports}\}$ and $B = \{\text{gender} = \text{Boy}\}$. are A and B independent?
- 6. there are three ways to check for independence
 - (a) is $P\{A|B\} = P\{A\}$?
 - (b) is $P\{B|A\} = P\{B\}$?
 - (c) is $P\{A \text{ and } B\} = P\{A\}P\{B\}$?

if the answer is yes to any of them, then the events A and B are independent.

7. <u>multiplication rule</u> : we can use the definition of conditional probabilities to calculate the probability of events A and B.

$$P\{A \text{ and } B\} = P\{A|B\}P\{B\}$$

- 8. <u>example</u> Roger Federer, Wimbeldon 2004 made 64% of his first serves (meaning he missed 36% of them). knowing that he faulted on the first, he faulted 6% of the time on his second attempt. find the probability of a double fault.
- 9. <u>sampling without replacement</u> : choosing subjects from a population where subjects are removed from the population after being selected.
- 10. <u>example</u> : Lotto south chooses 6 number 1 49, sampled without replacement. find the probability of winning.

5.4 More Examples

1. \underline{ex} : space shuttle safety

out of 113 missions, there were 2 failures. find $P\{\text{at least one failure in 100 missions}\}$. let A = at least one failure in 100 missions. then $A^c = \text{no failures in 100 missions}$ and $P\{A\} = 1 - P\{A^c\}$. then let S1 = successful 1st mission, S2 = successful 2ndmission and so on. if $P\{S\} = 0.971$ then $P\{A\} = 0.947$ and if $P\{S\} = 0.9999833$ then $P\{A\} = 0.002$. the probability depends a lot on the assumed probability of success.

2. <u>diagnostic testing</u> : let S = some state actually present (i.e. taking drugs, some medical condition actually present), POS = tested positive for the condition, NEG = tested negative for the condition. then we have the following conditional probabilities

	Test Result		
State Present	Positive (POS)	Negative (NEG)	
	sensitivity	false negative	
Yes (S)	$P\{POS S\}$	$P\{NEG S\}$	
	false positive	specificity	
No (S^c)	$P\{POS S^c\}$	$P\{NEG S^c\}$	

- 3. given the state is present, sensitivity is the probability the test detects it (by giving a positive result)
- 4. given the state is not present, specificity is the probability the test gives a negative result
- 5. <u>example</u> : drug testing in air traffic controllers. we are given the following for a drug test given to air traffic controllers : specificity = 0.93, sensitivity = 0.96 and prevalence (actual drug use) = 0.007.
 - (a) find the probability of a positive test

- (b) find the probability an air traffic controller used drugs given they test positive.
- (c) find the probability an air traffic controller that tested positive was actually using drugs.