9.1 Two sample tests for the population proportion

1. Assumptions

- categorical response variable for two groups
- independent random samples
- n_{1} and n_{2} are large enough, there are at least five successes and five failures in each group.

2. Hypotheses
$H_{0}: p_{1}=p_{2}$

$$
\begin{aligned}
H_{a}: & p_{1} \neq p_{2} \\
& p_{1}<p_{2} \\
& p_{1}>p_{2}
\end{aligned}
$$

3. Test statistic

$$
z_{0}=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{2}}+\frac{1}{n_{2}}\right)}}
$$

where

$$
\hat{p}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}}
$$

(x_{1} and x_{2} are the number of successes in each sample)
4. P-values

- found same way as with one sample test (use normal tables)
- could also use critical value method

5. Conclusion

- make one

ex : violence and the tv

ex : getting a job after graduation

9.2 Two sample tests for the population mean

1. Assumptions

- two quantatitive response variables
- independent random samples
- approx normal population distributions for both samples ${ }^{1}$

2. Hypothesis

[^0]\[

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2} H_{a}: \\
& \mu_{1} \neq \mu_{2} \\
& \mu_{1}<\mu_{2} \\
& \mu_{1}>\mu_{2}
\end{aligned}
$$
\]

3. Test Statistic

$$
t_{0}=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

4. P-value

- will depend on H_{a}
- t_{0} has the t distribution with $d f \approx n_{1}+n_{2}-2$.
- or we could use the critical value method (easier to use in most cases). remember that the critical value c is found using the appropriate statement about H_{a}.

$H_{a}: \mu_{1} \neq \mu_{2}$	use	$P\{T>c\}=\alpha / 2$	reject when $t_{0}>c$
$H_{a}: \mu_{1}<\mu_{2}$	use	$P\{T<c\}=\alpha$	reject when $t_{0}<c$
$H_{a}: \mu_{1}>\mu_{2}$	use	$P\{T>c\}=\alpha$	reject when $t_{0}>c$

5. Conclusion

- make one

Example : Grades

- two students are comparing their homework scores the scores are

$$
\begin{aligned}
& x_{1}=(17,12,15,23,18,19,19,17) \\
& x_{2}=(17,17,16,19,19,20,15,0)
\end{aligned}
$$

- test whether or not the population means are the same

[^0]: ${ }^{1}$ may be dropped if samples are large and/or doing a two-sided test

