8.3 Significance tests about the mean

- summarize the 5 steps
 - 1. Assumptions
 - variable is quantatative
 - data production used randomization
 - population distribution is appoximately normal
 - 2. Hypothesis

$$\begin{aligned} H_0: \ \mu = \mu_0 & H_a: \ \mu \neq \mu_0 \\ \mu < \mu_0 \\ \mu > \mu_0 \end{aligned}$$

- 3. Test statistic
 - $-t_0 = (\bar{x} \mu_0)/se$ where $se = s/\sqrt{n}$
 - use t distribution because st dev (σ) is estimated and is good to use for small sample sizes. use df = n 1.
- 4. p-value (remember describes how unusual the data would be given H_0 true)
 - single-tail or double-tail depending on H_a .
- 5. conclusion
 - report p-value
 - make judgement on H_0 based on significance level (α).
- Example : Anorexia study
 - -29 girls recieved a new type of therapy
 - want to determine if these therapies had an effect on wieght
 - go through 5 steps
- how do we approximate p-values using the table?
- results from two-sided test agree w/ results from confidence intervals.
- what happens if normality assumption fails?
- what effect does the sample size have on p-values?

8.4 Types of error

		Do not reject <i>H</i>	I_0 Reject H_0
•	H_0 true	correct decision	n type I error
	H_0 not true	type II error	correct decision
		Acquit	Convict
•	Innocent $(H_0$) correct decisi	on type I error
-	Guilty (H_a)	type II erro	r correct decision

8.5 Limitations of hypothesis tests

- Example : Politics
 - survey asks people to rate themselves on a 7 points scale (1 being extremely liberal and 7 being extremely conservative)
 - would like to determine if, in general, Americans lean one way or the other.
- some problems with significance tests
 - statistical significance \neq practical significance
 - do not reject $H_0 \neq$ accept H_0
 - p-value is not the probability that H_0 is true
 - should not report only results which are statistically significant
 - some tests may be significant by chance