8.1 Hypothesis Tests

- main goal in many research studies is to check whether the data support certain statements or predicitions.
- these statements are called hypotheses
- <u>significance test</u> : a method of using data to summarize the evidence about a hypothesis.
- <u>hypothesis</u> : statement about a population, ususally we want to say that a parameter takes a value or falls within a range of values.
- there are 5 steps to a hypothesis test
 - 1. Assumptions
 - each test has certain conditions under which it is valid
 - some typical assumptions are : randomization, large sample sizes and/or specifying a distribution for the underlying data.
 - 2. Hypothesis
 - two hypotheses called the null (H_0) and the alternative (H_a) .
 - H_0 typically represents no effect
 - 3. Test Statistic
 - usually some standardized form of the point estimate for the parameter involved in H_0 and H_a
 - we will go over a few specific cases, namely the population proportion and the population mean.
 - 4. P-value
 - assuming that H_0 is true, the p-value is the probability we would observe the test statistic or more extreme values of the test statistic
 - small p-value means that the sample data would be unusual if H_0 were true
 - 5. Conclusion
 - report the p-value and interpret it in relation to the question that motivated the test
 - make a judgement of whether or not to reject H_0 .

8.2 Significance Tests for the Population Proportion

• <u>Ex 3</u> Astrology : in this study we had 116 adult volunteers, each subject had a horoscope prepared by an astrologer and filled out a CPI (California Personality Index). then an astrologer was shown birth data, horoscope and 3 CPI's (one of which corrosponded to the birth data and horoscope). then the astrologer was supposed to select the correct CPI given the information at hand. 28 participating astrologers were selected at random from a group. study was double blind, neither the astrologer or reasearcher knew the subject whose birth data and horoscope were chosen. astrologers claim that they can choose the correct personality test better than someone at random. state the null and alternative.

- in the case that we are testing the population proportion, we have the following specifics
 - 1. Assumptions
 - variable is categorical
 - data are obtained through randomization
 - sample size large enough for the CLT
 - 2. Hypothesis
 - here we have a hypothesis of the form

$$H_0: p = p_0 \qquad \qquad H_a: p > p_0$$

where $p_0 = 1/3$.

- here the alternative is used to detect whether p is larger than the value specified in ${\cal H}_0$
- this is called a one sided alternative because we are only concerned with values of p in H_a on one side of the parameter value p.
- a two-sided hypothesis would be $H_a: p \neq p_0$, here we are considering values on both sides of p.
- 3. Test Statistic
 - calculate the z score of \hat{p} assuming H_0 is true

$$z_0 = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

- in this example $\hat{p} = 0.34$ and $z_0 = 0.26$.
- 4. P-value
 - the p-value summarizes how unusual the data would be if H_0 were true
 - we know that by the CLT $z_0 \sim N(0, 1)$
 - p-value is given as

$$P\{Z > z_0\} = 1 - \Phi(z_0) = 0.3974$$

- 5. Conclusion
 - summarize test by interpreting p-value
 - 0.4 not really that small
 - does not provide enough evidence against H_0 : p = 1/3 and in favor of $H_a: p > 1/3$.
 - the sample data are the kind that we'd expect if p = 1/3, or in other words an astrologer is just guessing

How to interpret p-value

- significance test analyzes the strength of the evidence against H_0 (the null)
- to show that H_a is preferred over H_0 we show that the data contradict H_0
- if the p-value is small, the data contradict H_0 in favor of H_a
- we never say that we have accepted H_a or that we accept H_0 , we only say that we reject H_0 in favor of H_a or that we cannot reject H_0
- in the previous example we said "we cannot reject $H_0: p = 1/3$ "

Alternative (H_a) determines p-value

- consider $H_0: p = p_0$ $H_a: p > p_0$
- consider $H_0: p = p_0$ $H_a: p < p_0$
- consider $H_0: p = p_0$ $H_a: p \neq p_0$

Ex 4 : Dogs detecting cancer

- trained dogs attempt to detect bladder cancer by smell
- the dog has 7 urine samples to choose from, one of which is positive for bladder cancer
- the dogs guessed correctly 22 of 54 times.
- test the hypothesis that the dog is better or worse than guessing.

$$H_0: p = 1/7$$
 $H_a: p \neq 1/7$