7.4 Choosing a sample size

- confidence intervals are given by the general formula

$$
\text { point estimate } \pm \text { margin of error }
$$

- margin of error is based on the confidence level and the standard error
- for a sample proportion we have the confidence interval

$$
\hat{p} \pm z \sqrt{\frac{\hat{p}(1-\hat{p}}{n}}
$$

z is the z-score for the appropriate confidence level. we can use the normal distribution based on the CLT

- for the sample mean we have

$$
\bar{x} \pm t\left(\frac{s}{\sqrt{n}}\right)
$$

here the t score comes from the t distribution and is used when the st deviation is unknown and the sample size is assumed to be small. the value for t is based on the confidence level and the degrees of freedom (which is a function of the sample size). as n gets larger t approaches z.

- question : can we use the formulas for confidence intervals to find the sample size needed?
- remember that for the sample proportion we have the assumption

$$
n \hat{p} \geq 15 \quad \text { and } \quad n(1-\hat{p}) \geq 15
$$

- we also have the equations for the margin of error. these can be solved for n

$$
\begin{align*}
& n=\hat{p}(1-\hat{p})\left(\frac{z}{m}\right)^{2} \quad \text { for sample proportion of binomial data } \tag{1}\\
& n=\left(\frac{t s}{m}\right)^{2} \quad \text { for sample mean of quantatative data } \tag{2}
\end{align*}
$$

- remember that the t score is found based on the sample size. since this is unknown we will use $t=2$ as an initial estimate.
- in practice the values of \hat{p} and s are unknown before a study is done. we'll look at some examples for some guidelines.
- Example : the U would like to improve the performance of their incoming freshmen. the university will do a study and fund some programs in a specific department if a majority of incoming freshmen think they need help from that department. one of the questions on the survey will be "do you want/need help improving your math skills?". assuming that we want a margin of error equal to 0.04 for the study
(a) assuming we know that a prior study found that 58% answered yes to a similar question, find n.
(b) assuming that we think the study will not reccomend the money be spent in the math department.
(c) the study actually found that 48.4% answered yes and $n=1096$. what was the actual confidence interval.
- Ex 10: a social scientist would like to determine education levels in Africa. how large should the study be to deterimine this given a margin of error of 1 year?
- summary :
(a) sample size equations are given by (1) and (2)
(b) increasing the margin of error will decrease the sample size
(c) increaseing the confidence level will increase the sample size
(d) as the variability in the data increases, so will the required sample size.
(e) an organization may need to consider the financial aspects of running a study, meaning that if a smaller sample size is needed (for whatever reason), they may need to settle for a larger margin of error.

