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1 Numerical Linear Algebra (cont)

1.3 Iteration Methods

All the direct methods are we have learned require

1. O(n3) computational operations, and

2. O(n2) of memory, (in general) regardless the spar-
sity of the matrix. For example LU decomposi-
tion of a space matrix may be a full matrix.

We would like to find a solution to the linear system
Ax = b faster then O(n3). In order to do so we would
to compromise on the accuracy, that is we will look for
an approximation to the solution of Ax = b instead
of an exact (unto round-off error) solution. We will
construct a sequence of approximations asymptotically
convergent to the exact solution. Such methods are
called iterative methods, since we compute the next
term in the sequence, i.e. next approximation, until
the error is small enough for our needs.

Iterative methods would often require less memory
then any direct method, for example it could be imple-
mented without keeping the matrix A in the memory.
That is one can solve a very big linear system almost
without limitations prescribed by the memory size.

For an iterative method one requires:

1. the computation of xk from xk−1 to be (compu-
tationally) cheap, and also

2. the convergence of xk to be fast.

However such requirements are little contradictive, for
example xk = A−1b will converge fast but not cheap,
whenever xk = xk−1 is cheap but never converge.

In most of cases the cost of computing xk will be
matrix-vector multiplication dominated for some ma-
trix B derived from the matrix A. The main idea is
to describe the matrix A as a sum of matrices, e.g.
Ax = A1x+ A2x = b. Assuming A1 is invertible gives
x = −A−11 A2x + A−11 b. Next, let B = −A−11 A2 and
C = −A−11 b to get x = Bx + C. That is, x is a fixed
point of iteration function g(x) = Bx + C. We de-
note B Iteration Matrix, and a Fixed Point Iteration
is given by xk = Bxk−1 + C.

Theorem 1.1 (Convergence of the iterative method).
The convergence of an iterative method is understood
as lim

k→∞
‖ek‖ → 0 which gives

‖ek‖ = ‖xk − x‖ = ‖(Bxk−1 + C)− (Bx + C)‖ = ‖B (xk−1 − x)‖ ≤

≤ ‖B‖ ‖xk−1 − x‖ = ‖B‖ ‖ek−1‖ ≤ ‖B‖2 ‖ek−2‖ ≤ . . . ≤ ‖B‖k ‖e0‖

That is, the sufficient criteria for the convergence
would be ‖B‖k ‖e0‖ → 0, or more precisely ‖B‖ < 1
in some norm.

Note also the similarity to the fixed point theorem:

‖g′(x)‖ =
∥∥ d
dx (Bx+ C)

∥∥ = ‖B‖ < 1.

The words “in some norm” says that it is in genral
possible that ‖B‖∗ > 1 in some another norm ‖·‖∗ >
1. Since it is impossible to check all the norms one
requires better criteria.

Theorem 1.2. The necessary and sufficient cri-
teria for the iterative method to converge is ρ(B) < 1.
In other words, if ρ(B) < 1 there exist a norm for
which ‖B‖ < 1.

In the following discussion we consider the form of
A = L+D+U , where L is lower triangular matrix, D
is diagonal matrix and U is upper triangular matrix.
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1.3.1 Jacobi Iteration Method

Jacobi method suggests to solve Ax = (L+D+U)x = b
for Dx = −(L + U)x + b. Assuming that the di-
agonal entries of A (that is of D) are all non zero.

In this case
(
D−1

)
ii

= (D)
−1
ii , that is it is signif-

icantly (computationally) cheap to compute the in-
verse matrix of the diagonal matrix D. Finally, x =
−D−1(L + U)x + D−1b = Bx + C which defines the
iteration (for i = 1, 2, . . . n)

xk+1
i = D−1(b− (A−D)xk =

1

aii

bi −
n∑

j=1, j 6=i

aijx
k
j

 ,

Definition 1.3. A matrix is called row (column) Di-
agonal Dominant if the absolute value of the diagonal
entry is greater then sum of absolute values of the other
entries in the row (column). That is the row DD ma-
trix satisfies |aii| >

∑n
j 6=i=0 |aij | for every i, and the

column DD matrix satisfies |ajj | >
∑n

i6=j=0 |aij | for
every j.

Theorem 1.4. Let A be diagonal dominant matrix
(either row DD or column DD), then the Jacobi Itera-
tion for A is convergent.
Proof hint: Show that ‖B‖∞ < 1 for row DD, and
‖B‖1 < 1 for column DD.

1



1.3.2 Gauss Seidel

The Jacobi Iteration can be improved very easily. Note
that when we compute the component i > 1 of xk+1,
the values of xk+1

j for j < i are already known, but

we still use the old xkj . Gauss Seidel method uses the
newest values of x as soon as they are known. This
can be formulated as

x
(k+1)
i =

1

aii

(
bi −

∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j

)
Which is a forward substitution of

L∗ = (L+D) ~x(k+1) = b∗ = b− U~x(k),

that is B = −(L+D)−1U and C = (L+D)−1b, since
L+D is lower triangular matrix. One expresses it as

~x(k+1) = D−1
(
b− L~x(k+1) − U~x(k)

)
Theorem 1.5. Let A be diagonal dominant matrix
(either row DD or column DD), then the Gauss Seidel
Iteration for A is convergent.

1.3.3 Relaxation Techniques

It is known that error often have a high oscillatory
behavior. Relaxation techniques are often related to
the methods that smoothes the the oscillatory behavior
of the error.

Definition 1.6. Residual Vector Let x̃ be an ap-
proximation to the solution of the linear system Ax = b
then the residual vector reads for r = b−Ax̃

Note that residual vector r is not the error vector
which is defined as e = x−x̃. The relationship between
the relationship between the error and the residue is
given by r = b−Ax̃ = b−A(x−e) = Ae. Furthermore,
for an ill-conditioned matrix the residual can be small
while the error is big(why?).

The i’th entry of the residual vector is given by
ri = bi −

∑n
j=1 ai,jxj rewrite it as ri + aiixi = bi −∑n

i 6=j=1 ai,jxj . This give the following formulation of
Jacobi Iteration:

xk+1
i =

rki + aiix
k
i

aii
= xk

i +
rki
aii

.

This has a general form of xk+1 = xk + Prk, the
error is given by ‖ek+1| = ‖xk+1 − x‖ = ‖xk + Prk − x‖ ≤
‖xk − x‖ + ‖Prk‖ ≤ e0 + ‖P‖

∑k
j=0 rj which hints that to

reducing the residual part of the error accelerates the
convergence.

Jacobi Over Relaxation(JOR) : JOR defined by

xk+1
i = xk

i + ω
rki
aii

= xk
i +

ω

aii

(
bi −

∑n

j=1
ai,jxj

)
,

where ω is an acceleration parameter, or in other
words, a relaxation factor. One formulate it as

xk+1 = (ωB + (1− ω)I)xk + ωC = B̃xk + C̃,

where B = D−1(L+ U) and C = D−1, that is B and
C of the Jacobi method. Furthermore ifω = 1 this is
exactly Jacobi Iteration.

One may obtain the same formula from

x = Bx + C

ωx + x− x = ω(Bx + C)

Theorem 1.7. If Jacobi convergent, then JOR is con-
vergent for any 0 < ω ≤ 1.

Successive Over Relaxation (SOR) One applies
the similar approach on a Gauss Seidel iteration to ob-
tain a method known as SOR. That is xk+1 = ω(Bxk+
C) + (1 − ω)x with B = −(L + D)−1U and C =
(L+D)−1. The commonly used form is given by

(ωL+D)x = ωb− [ωU + (ω − 1)D]x

and the iteration is given by (for i = 1, 2, . . . , n)

x
(k+1)
i = (1−ω)x(k)

i +
ω

aii

(
bi −

∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j

)
In order to write Gauss Seidel and SOR in the form

xk+1 = xk + Pr, one defines a residual of xk+1
i =

(xk+1
1 , xk+1

2 , . . . , xki . . . x
k
n) (note the paper index switches

at i) to be rk+1
i = (rk+1

1i , . . . , rk+1
ni ) which m’th com-

ponent reads for

rk+1
mi = bm −

∑i−1

j=1
amjx

k+1
j −

∑n

j=i
amjx

k
j

Now Gauss Seidel and SOR reads for xk+1
i = xki +

rkii
aii

and xk+1
i = xki + ω

rkii
aii
, respectively.

Theorem 1.8. Let A be a matrix with no zeros in
diagonal, then SOR may converge for 0 < ω < 2 is
over relaxation.

In general 0 < ω < 1 is under relaxation, and 1 <
ω < 2

Theorem 1.9. Let A be a positive definite matrix and
0 < ω < 2, then SOR converge from any initial guess.

1.3.4 QR via Least Squares and

One may try to approximate the linear system Ax =
b using minimization of the residual vector in some
norm, e.g. ‖Ax−b‖. Least squares is the most common
method, that is

min
x
‖Ax− b‖2 = min

x

√√√√ n∑
j=1

(Aj→x− bj)
2

To see relationship with QR, let A = QR, where
Q is an orthogonal basis of the columns of A and R is
upper triangular matrix.

‖Ax− b‖2 = ‖QT
(Ax− b)‖2 = ‖QT

Ax−Q
T
b)‖2 =

‖(QT
A)x−Q

T
b)‖2 = ‖Rx−Q

T
b)‖2

Thus,

min
x
‖Ax− b‖2 = min

x
‖Rx−QT b)‖.

which has a solution x = R−1QT b = A−1b.
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