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1 Numerical Linear Algebra

Consider linear system of equations An×nxn,1 = bn,1,
where the matrix A can be dense or, when most of the
entries are zeros, sparse. We distinct between direct
methods, that provide an exact solution up to round-
off error in a finite number of steps, and the iterative
methods that can be characterized by a sequence of
approximations that tends to the exact solution, that
is xn+1 = g(xn)→ x̄

1.1 Direct Methods

1.1.1 Cramer’s Rule

One of commonly (hand) used direct methods is the

Cramer’s rule that says xi = det(Ai)
det(A) where Ai is the

matrix formed by replacing the i’th column of A by
the column vector b. However this algorithm is very
expensive since one need to compute n + 1 determi-
nants, which costs n · n! each, that is very ineffective -
n · (n + 1)! operations.

1.1.2 Gauss Elimination

For an upper triangular matrix which has [A]i,i+p = 0
for i < i + p 6 n the solution to Ax = b is given by
backward substitution

xi =
1

aii

(
bi −

n∑
k=i+1

aikxk

)

for i = n, n− 1, ..., 1.
In the particular case of diagonal matrix, this gives

xi = bi
aii

and for unit matrix I even simpler xi = bi.
For the general matrix which is not triangular or

diagonal, one first use elementary operation to make it
upper triangular and then do backward substitution.
Algorithm:

Initial Triangulation:

1. for each column rj : j = 1, ..., n− 1

2. for each row ri : i = j + 1 . . . n

3. ri ← ri − aij

ajj
rj

4. bi ← bi − aij

ajj
bj

Backward Substitution:

5. for each unknown xi : i = n, n− 1, ..., 1

6. xi =
1

aii

(
bi −

n∑
k=i+1

aikxk

)

In Initial Triangulation for each column we do n−j
operations of elimination which gives (as sum of arith-
metic progression) O(n2) operations per row of n ele-
ments, that is O(n3) operation in total. The Backward
Substitution is n row operations, thus takes O(n2).

However, the algorithm it is not defined for the
matrices with zeros in diagonal. Furthermore, for the
very small entries of the diagonal, 1/aii is huge, there-
fore future adding/subtracting to this number become
negligible which increase the error. The solution to the
problems described called a Partial Pivoting, that is,
in the second statement of the algorithm the row ri be
choosen to have the largest aij , i > j. This improve
the error.

Example 1.1. Let 0 ≤ ε ≤ 10−15. Consider the fol-
lowing system[

ε 1
1 −ε

] [
x
y

]
=

[
1 + ε
1− ε

]

Which has the solution [x, y]T = [1, 1]T .
Without pivoting we get the wrong answer

[
ε 1
1 −ε

∣∣∣∣ 1 + ε
1− ε

]
r2←r2−

1
ε r1−−−−−−−−−→

[
ε 1
0 −ε− 1

ε

∣∣∣∣ 1 + ε

1− ε− 1+ε
ε

]
≈
[

ε 1
0 − 1

ε

∣∣∣∣ 1
− 1

ε

]
→
[

ε 1
0 1

∣∣∣∣ 1
1

]
→
[

1 0
0 1

∣∣∣∣ 0
1

]

With Pivoting we get the correct answer[
ε 1
1 −ε

∣∣∣∣ 1 + ε
1− ε

]
≈
[

ε 1
1 −ε

∣∣∣∣ 1
1

]
r2↔r1−−−−−→

[
1 −ε
ε 1

∣∣∣∣ 1
1

]
r2←r2−εr1−−−−−−−−→

[
1 −ε
0 1 + ε2

∣∣∣∣ 1
1− ε

]
≈
[

1 0
0 1

∣∣∣∣ 1
1

]

1.1.3 LU Decomposition

One writes Gauss Elimination operations as a a ma-
trix multiplication. Before we get into details of the
method, let start with some interesting characteris-
tics. Denote Ln the n’th elimination operation, than
the sequence of initial triangulation can be wren as
Ln · · ·L2L1A = U , where U denotes the resulting up-
per triangular matrix. One denotes L−1 = Ln · · ·L2L1,
thus A = LU = L−11 L−12 . . . L−1n U . We will see it soon
that the matrix L is lower triangular.

The idea of decomposition is as following: since
Ax = LUx = b, denote Ux = y then Ly = b, in other
words Ux = y = L−1b. One think about this idea as
dividing the hard problem of Ax = b into two simple
problems (since L and U are triangular, that is for-
ward/backward substitution O(n2) operations each):{

Ux = y

Ly = b
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Still the decomposition itself require O(n3) opera-
tion. The advantage of the method is for the cases of
multiple input: {An,nxk = bk}Nk=1 when N · O(n3) >

O(n3) + 2N · O(n2) ⇒ n > 2N
N−1 > 2, that is almost

every time.
We now define L and L−1 as following

(Li)jj = 1, (Li)ij = −Aij

Aii
,∀j > i

and
(
L−1i

)
jj

= 1,
(
L−1i

)
ij

=
Aij

Aii
,∀j > i

other entries are zeros, for example

L1 =


1

−a21
a11

1

...
. . .

−an1
a11

1

 L−1
1 =


1

a21
a11

1

. . .
an1
a11

1



Example 1.2.

A =

 1
2

1 3
2

2 5 5
7 8 9

 L1 =


1 0 0

− 2
1/2

1 0

− 7
1/2

0 1

 L1A =

 1
2

1 3
2

0 1 −1
0 −6 −12



Note that if we change in previous example A22 = 4
this won’t affect the L1 but now (L1A)2→ =

(
0 0 −1

)
which won’t allow us to continue. This is similar prob-
lem to what we saw in gaussian elimination and the
solution is pivoting. Fortunately, pivoting may also be
written in the form of matrix multiplication.

Denote Pn the permutation matrix at n’th step of
the algorithm. The permutation matrix that exchange
between rows i and j is created by exchanging these
rows in the unit matrix I. That is

P = P i↔j [e1, · · · , ei−1, ej , ei+1, · · · , ej−1, ei, ej+1, · · · , en]T

where ej = (0, ..., 1, ..., 0)T with the 1 at the place j.
The nice thing is that P = P−1 (why?) For example 0 1 0

1 0 0
0 0 1

 0 1 0
1 0 0
0 0 1

 = I

For the general case of LU-decomposition with piv-
oting one writes LnPn · · ·L2P2L1P1A = U . To get the
PA = LU form define

L̃n = Ln,

L̃n−1 = PnLn−1P
−1
n ,

...

L̃1 = PnPn−1 · · ·P2L1P
−1
2 · · ·P−1

n−1P
−1
n

and therefore L̃n · · · L̃1Pn · · ·P1 = L−1PA = U . The
following two properties holds:

1. L̃j is lower triangular since PkLjPk for k > j

2. L̃n · · · L̃1Pn · · ·P1A = LnPn · · ·L2P2L1P1A = U

Example 1.3. Let L3P3L2P2L1P1A = U , then
L̃3 = L3,

L̃2 = P3L2P
−1
3 ,

L̃1 = P3P2L1P
−1
2 P−13

and therefore

L̃3L̃2L̃1P3P2P1 = L3P3L2P
−1
3 P3P2L1P

−1
2 P−1

3 P3P2P1 =

= L3P3L2P2L1P1

1.1.4 QR decomposition

Yet another decomposition is into An×n = QR where
Q is an Orthonormal Matrix (which gives QQT = I)
and R is an Right/Upper Triangular Matrix. One may
write it as system of equation{

Rx = y

Qy = b

or evan as Rx = QT b
The orthogonal matrix Q = [q1, . . . , qn] is a orthog-

onal basis of the column space (also called a range) of
the matrix A. Note that the columns of A = [a1, . . . , an]
is also a basis of it’s range, therefore in order to obtain
Q one uses the Gram-Schmidt process.

The matrix R is given by R = QTA. Since R is
upper triangular, one obtain it using inner product of
columns of Q with columns of A as following: (R)ij =
(qi, aj) for i ≥ j, while for i < j set (R)ij = 0, that is

R =


(q1, a1) (q1, a2) (q1, a3) . . .

0 (q2, a2) (q2, a3) . . .
0 0 (q3, a3) . . .

.

.

.
.
.
.

.

.

.
. . .



There is a problem with the numerical stability of
the Gram-Schmidt: due to the round-off error the vec-
tors aren’t really orthogonal. In order to improve the
stability one uses the Modified-Gram-Schmidt which
we describe below. However, there is also two more sta-
ble algorithms (which we won’t learn), the Householder
Transformation and the Givens Rotations, which gives
similar results.

Theorem 1.4 (Modified Gram-Schmidt Process).
Let {bj}nj=0 be some basis for a vector space V . The

orthogonal basis {vj}nj=0 is defined algorithmically by

vk = bk
for j=1 to k-1

vk = vk − vj
(vj ,vj)

(vk, vj)

end

Rectangular matrices Let Am×n be m×n matrix

where m ≥ n, then A = QR =
[
Q1 Q2

] [R1

0

]
= Q1R1.

Example 1.5.

A =

3 −6
4 −8
0 1

 =

3/5 0
4/5 0
0 1

[5 −10
0 1

]
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