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1 Approximation of Functions

1.1 A Norm

Until now our approach in approximation of function
was to find an interpolation. When we wanted to im-
prove the error we used special interpolation points,
that is roots of orthogonal polynomials.

We now learn another approach of approximation.
Instead of interpolation condition Pn (xj) = f (xj) we
will attempt to find to minimize the error

||e(x)|| = ||Pn(x)− f(x)||

where the function || · || is defined as following

Definition 1.1. A norm over Vector Space V is a
function || · || : V 7→ R that for each scalar λ ∈ F and
vector v ∈ V satisfies the following conditions:

1. Positivity: ‖v‖ ≥ 0, and also ‖v‖ = 0 iff v = 0

2. Homogeneity: ‖λv‖ = |λ|‖v‖

3. Triangle Inequality: ‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖

Example 1.2.

1. For a vector in v ∈ Rn, including {vj = f (xj)}nj=0

• L1-norm ‖v‖1 =
n∑
i=1

|vi|

• L∞-norm ‖v‖∞ = max
i
|vi|

2. For real functions continuous in an interval [a, b]

• L1-norm ‖f‖1 =
b∫
a

|f (x)| dx

• L∞-norm ‖f‖∞ = max
a6x6b

|f (x)|

Theorem 1.3 (Cauchy Schwartz inequality (C-S)).
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Theorem 1.4. Every Inner Product Induce a Norm
‖v‖ =

√
(v, v)

Proof: The conditions 1 and 2 implied by the def-
inition of the inner product. To show that the 3rd
condition is satisfied we use

|Re (v1, v2)| 6 |(v1, v2)|︸ ︷︷ ︸
|Re (v1, v2) + iIm (v1, v2)|

6
C-S
‖v1‖ ‖v2‖ .

Thus

‖v1 + v2‖ = (v1 + v2, v1 + v2) = (v1, v1) + (v1, v2) + (v1, v2)+

(v2, v2) = (v1, v1) + 2 Re (v1, v2) + (v2, v2) 6
C - S

‖v1‖+ 2 ‖v1‖ ‖v2‖+ ‖v2‖ = (‖v1‖+ ‖v2‖)2

For the current discussion we interesting in two fol-
lowing L2-norms

1. For a vector in v ∈ Rn, including {vj = f (xj)}nj=0,

the inner product (u, v) =
∑
ujvj induces ‖v‖2 =√

n∑
i=1

|vi|2

2. For real functions continuous in an interval [a, b],
the inner product (f, g) =

∫
f ḡ dx induces ‖f‖2 =√

b∫
a

|f (x)|2 dx

1.2 Least Square Fit

Let f(x) be real valued continuous function. We want
to approximate it using function of the following form

g (x) =
∑
n

cnbn (x),

where bn(x) is some basis. The error is given by e (x) =
f (x)− g (x) = f (x)−

∑
n
cnbn (x). We want to find the

coefficients c1, . . . , cn such that ‖e(x)‖2 is minimal.

‖e‖22 = g (c1, ..., cn) =

(
f −

∑
n

cnbn, f −
∑
n

cnbn

)
=

= (f, f)−
(
f,
∑
n

cnbn

)
−
(∑

n

cnbn, f

)
+

(∑
n

cnbn,
∑
n

cnbn

)
=

= ‖f‖ − 2
∑
n

cn (f, bn) +
∑
n

∑
m

cncm (bn, bm)

In order to find the minimum we need to consider the
derivatives, which gives

∂g

∂cj
= −2 (f, bj) + 2

∑
n

cn (bn, bj) = 0

Thus, we got for all j (f, bj) =
∑
n
cn (bn, bj) One write

it in a matrix form as

M (c0, · · · , cn)T = ((f, b0), · · · , (f, bN ))T
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where Mm,n = (bm, bn).
We need to verify that the linear system is not sin-

gular, for which we will show that the homogeneous
linear system M~c = 0 has only the trivial solution,
that is ~c = ~0.

For the homogeneous system M~c = 0, we have
N∑
n=1

cn (bn, bj) =

(
N∑
n=1

cnbn, bj

)
= 0, ∀j

that is, ∀j the function g(x) =
N∑
n=1

cnbn(x) is orthog-

onal to bj . However, since g ∈ Span{bn}Nn=1, the or-
thogonality to all {bn}Nn=1 implies that g = 0. Since
{bn}Nn=1 is linear independent we get cn = 0, ∀n.

The minimality is due to the following, for any se-
quence εn:∥∥∥f −∑ (cn + εn) bn

∥∥∥2 =∥∥∥f −∑ cnbn +
∑

cnbn −
∑

(cn + εn) bn

∥∥∥2 =∥∥∥f −∑ cnbn

∥∥∥2 +
∥∥∥∑ cnbn −

∑
(cn + εn) bn

∥∥∥2+

2
(
f −

∑
cnbn,

∑
cnbn −

∑
(cn + εn) bn

)
>

∥∥∥∥∥f −∑
n

cnbn

∥∥∥∥∥
2

since(
f −

∑
n

cnbn,
∑
n

cnbn −
∑
n

(cn + εn) bn

)
=(∑

n

cnbn − f,
∑
n

εnbn

)
=

(∑
n

cnbn,
∑
n

εnbn

)
−
(
f,
∑
n

εnbn

)

=
∑
j

εj

{∑
n

cn (bn, bj)− (f, bj)

}
︸ ︷︷ ︸

=0

= 0

Example 1.5. Given (xi, f (xi)) = (1, 3.2) , (2, 4.5) , (3, 6.1)
find a line that approximate the function. That is,

g = αb1 + βb0 = α

 1

2

3

+ β

 1

1

1

 , f =

 3.2

4.5

6.1


Thus

[
3 1 + 2 + 3
6 1 + 4 + 9

] [
b
a

]
=

[
3.2 + 4.5 + 6.1
3.2 + 9 + 18.3

]
and

therefore

a =
13.8 · 14− 30.5 · 6

42− 36
= 1.7 b =

30.5 · 3− 13.8 · 6
6

= 1.45

1.2.1 LSF Using Orthogonal Polynomials

The serious problem of the LSF method described above
is that the matrix M is in general case is a full matrix,
thus the numerical solution may be unstable.

Example 1.6. For example if we use inner product

(f, g) =
∫ b
a
f(x)g(x)dx with the standard polynomial

basis 1, x, x2, . . .. The entries of the matrix entries be-

come Mij = (bi, bj) =
∫ b
a
xi+jdx = xi+k+1

i+k+1

∣∣b
a

which give

the Hilbert matrix denoted as Hn+1(a, b), for example
for [a, b] = [0, 1] and n = 4 one get

H5(0, 1) =



1 1
2

1
3

1
4

1
5

1
2

1
3

1
4

1
5

1
6

1
3

1
4

1
5

1
6

1
7

1
4

1
5

1
6

1
7

1
8

1
5

1
6

1
7

1
8

1
9



The solution to the problem above is the use of
orthogonal polynomial basis. In this case the matrix
M become diagonal, so the coefficients are given cn =
(f,bn)
(bn,bn)

.

Example 1.7. {cn} =
{(

f, 1√
2

)
,
(
f,
√

3
2
x
)
,
(
f, 1

2

√
5
2

(3x2 − 1)
)
, ...
}

1.2.2 Sensetivity to error

Consider f(x) was measured with error ‖e(x)‖ ≤ ε,

that is f̃ (x) = f (x) + e (x). LSF have the following
interesting property∥∥∥∥∥f −∑

n

(
f̃ , bn

)
bn

∥∥∥∥∥ =

∥∥∥∥∥f −∑
n

(f, bn) bn −
∑
n

(e, bn) bn

∥∥∥∥∥ 6

6

∥∥∥∥∥f −∑
n

(f, bn) bn

∥∥∥∥∥+

∥∥∥∥∥∑
n

(e, bn) bn

∥∥∥∥∥
=

∥∥∥∥∥f −∑
n

(f, bn) bn

∥∥∥∥∥+

∥∥∥∥∥∥∥∥LSF (e)︸ ︷︷ ︸
≈e(x)

∥∥∥∥∥∥∥∥ 6

∥∥∥∥∥f −∑
n

(f, bn) bn

∥∥∥∥∥+ ε

that is LSF (f) ≈ LSF
(
f̃
)

.

1.2.3 Discrete Fourier Transform as LSF

If we use a functional basis bn(x) = ei2πnx/L the coef-
ficients become

cn = (f, bn) = (f, ei2πnx/L) =
1

L

∫ L/2

−L/2
f(x)e−i2πnx/Ldx

become a Fourier Transform coefficients or a Discrete
Fourier Transform coefficients:

cn = (f, bn) =
1

M

M/2∑
m=−M/2

f(xm)e−i2πnm/Mdx

This can be formulated with Vandermunde matrix of ω = e−2πi/N

cn =



1 1 1 1 1
1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ω2(N−1)

...
...

...
...

1 ωN−1 ω2(N−1) . . . ω(N−1)2


 x0

...
xn



The DFT can be calculated very efficiently using an algo-

rithm of Fast Furier Transform (FFT), here is how to use it in

matlab:

xn = linspace(a,b,M);
cn = fft(f(xn));
cn = fftshift(cn);
cn = cn/M;

Use help fft and help fftshift to understand why.
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