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1 Numerical Differentiation and
Integration (cont)

1.2 Numerical Integration (cont)

1.2.1 Integration using Interpolation (cont)

Composite Rules All the priorly discussed quadra-
tures implicitly considered h → 0. We consider now a
big interval [a, b] divided into subintervals for integra-
tion.

Composite Trapezoidal Rule Consider a uni-
form grid xj = a+ jh where j = 0, . . . , n and h = b−a

n
then∫ b

a

f (x) dx =

n∑
j=0

∫ xj+h=xj+1

xj

f (x) dx =

n∑
j=0

{
h
f (xj) + f (xj+1)

2
+O

(
h3)} =

=
b− a

n︸ ︷︷ ︸
h

(
f (a)

2
+

n−1∑
k=1

f (xj) +
f (b)

2

)
− n · f

′′ (c)

12
h3︸ ︷︷ ︸

O(h2)

Note: The formula of the quadrature remains the
same for any set a = x0 ≤ ... ≤ xn = b .

Composite Simpson Rule Similarly, for the grid
xk = a+ kh, h = b−a

2n , k = 0, . . . , 2n one gets∫ b

a
f (x) dx =

n−1∑
j=0

h

3

{
f (x2n) + 4f (x2n+1) + f (x2n+2) +O

(
h5
)}

=
h

3

f (a) + 2

n−1∑
j=1

f (x2n) + 4

n−1∑
j=0

f (x2n+1) + f (b) + nO
(
h5
)

=
h

3
{f (a) + 4f (x1) + 2f (x2) + 4f (x3) + . . .+ f (b)}

−
b− a

2h

h5

90
max

x∈[a,b]

{∣∣∣f (4) (x)
∣∣∣}

Example 1.1. How many points required to approx-
imate

∫ π
0

sinx dx with error bounded by 10−2 using
composite Trapezoidal method.

Since max
x∈[0,π]

∣∣∣sin(2)x
∣∣∣ = 1 one gets∣∣∣ f ′′(ξ)12 πh2

∣∣∣ 6 π
12h

2 6 10−2, that is

π
n = h 6

√
12
π 10−2 ≈

√
0.038 6 0.2, thus n > 16.

1.2.2 Integration using polynomial basis

One develops quadratures using Algebraic Order of Ex-
actness (similar to what we did with differentiation)

Trapezoidal Rule Consider a quadrature of the fol-

lowing form
∫ b
a
f (x) dx ≈ A0f (a) + A1f (b), exact for

the f = 1 and f = x. The linear system is
∫ b

a

1dx = b− a = A0 +A1∫ b

a

xdx =
b2 − a2

2
= aA0 + bA1

and the solution is A0 = A1 = b−a
2 , which gives the

trapezoidal rule, and shows it has the algebraic exact-
ness of 1.

Simpson Rule Similarly consider quadrature of the

form of
∫ b
a
f (x) dx ≈ A0f (a) + A1f

(
a+b
2

)
+ A2f (b)

exact for 1, x and x2. The linear system become

∫ b

a

1dx = b− a = A0 +A1 +A2∫ b

a

xdx =
b2 − a2

2
= aA0 + a+b

2 A1 + bA2∫ b

a

x2dx =
b3 − a3

3
= a2A0 + (a+b)2

4 A1 + b2A2

which has a solution (A0, A1, A2) = b−a
6 (1, 4, 1), which

gives the Simpson’s rule and shows it has the algebraic
exactness of 2.

1.2.3 Gaussian quadrature

We now developing quadratures for
∫ b
a
w (x) f (x) dx

where w(x) denotes weight function.

Orthogonal Polynomials

Definition 1.2 (Vector Space (briefly)). A vector
space V over a (scalar) field F is a set that is closed
under finite vector addition (u, v ∈ V ⇒ u + v ∈ V )
and scalar multiplication (c ∈ F, u ∈ V ⇒ cu ∈ V ).

Definition 1.3 (Inner Product). Let V be a sub-
space of a vector space over a field of complex numbers
F ⊂ C. Let u, v ∈ V . The function (u, v) : V ×V 7→ C
is called inner product if the following holds:

1. (u, u) ≥ 0 and (u, u) = 0 iff u = 0.

2. (u, v) = (v, u) where ū is the complex conjugate
of u; for V over reals (u, v) = (v, u).

3. (u1 + u2, v) = (u1, v) + (u2, v) for u1, u2, v ∈ V .

4. c(u, v) = (cu, v) = (u, c̄v)) for any scalar c ∈ F .
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We concentrate in the V of continuous functions on
an interval [a, b] over reals and the inner product with
the weight function w(x) ≥ 0 as following:

(f, g) =

∫ b

a

f(x)g(x)w(x)dx =
F⊂R

∫ b

a

f(x)g(x)w(x)dx

Definition 1.4 (Orthogonality). We say that the
functions (vectors) f and g are orthogonal iff (f, g) = 0.

Theorem 1.5 (The Gram-Schmidt Process). Let
{bj}nj=0 be some basis for a vector space V . The or-

thogonal basis {vj}nj=0 is defined by

v0 = b0, vk = bk −
k−1∑
j=0

vj
(vj ,vj)

(bk, vj)

Example 1.6.

1. Legender Polynomial: Interval [a, b] = [−1, 1],
weight function w(x) = 1.

Gram-Schmidt: Starting from 1, x, x2, . . .:

P0 (x) = 1

P1 (x) = x− (x,P0)
(P0,P0)

P0 (x) = x−
∫ 1
−1 xdx∫ 1
−1 dx

= x

P2 (x) = x2 − (x2,P0)
(P0,P0)

P0 (x)− (x2,P1)
(P1,P1)

P1 (x) =

= x2 −
∫ 1
−1 x2dx

2
−

∫ 1
−1 x3dx∫ 1
−1 x2dx

x = x2 − 1

3

Differential formula: Pn (x) = (−1)n

2n n!
dn

dxn

{(
1− x2

)n}
Recursive formula: P0 (x) = 1; P1 (x) = x;
Pn+1 (x) = 2n+1

n+1 xPn (x)− n
n+1Pn−1 (x)

2. Chebyshev Polynomial: Interval [a, b] = [−1, 1],
weight function w (x) = 1√

1−x2

Direct formula: Tn (x) = cos (n arccosx)

Recursive formula: T0 (x) = 1; T1 (x) = x;
Tn+1 (x) = 2xTn (x)− Tn−1 (x)

3. Laguerre Polynomial: Interval [a, b] = [0,∞),
weight function w (x) = e−x

Differential fornula: Ln (x) = ex

n!
dn

dxn (e−xxn)

Recursive formula: L0 (x) = 1; L1 (x) = 1− x;

Ln+1 (x) =
(

2n+1−x
n+1 Ln (x)− n

n+1Ln−1 (x)
)

4. Hermite Polynomial: Interval [a, b] = (−∞,∞),

weight function w (x) = e−x
2

Differential formula: Hn (x) = (−1)
n
ex

2 dn

dxn e
−x2

Recursive formula: H0 (x) = 1; H1 (x) = 2x;
Hn+1 (x) = 2xHn (x)− 2nHn−1 (x)

Gaussian quadrature Recall that when the polyno-
mial part of the error of interpolation p(x) = (x −
x0) . . . (x − xn) is symmetrical in the domain of inte-
gration the integral is vanishes and therefore the error
improves, i.e. moves to higher degree

e (h) =
∫ b

a
f [x0, ..., xn, x] p (x) dx =

(((((((((((
f [x0, ..., xn+1]

∫ b

a
p (x) dx+∫ b

a
f [x0, ..., xn+1, x] p (x) (x− xn+1) dx. Since the formula

is valid for any xn+1, one chooses xn+1 such that∫ b
a
p (x) (x− xn+1) dx = 0.Actually, it doesn’t depends

on xn+1, but on p(x), that is on interpolation points.
Given f(x) is 2n+ 2 continuous differentiable, one

choose interpolation points for
∫ b
a
w (x) f (x) dx to be

roots of the polynomial bn+1 orthogonal with respect
to the weight function w(x). That is, p(x) = 1

αn+1
bn+1,

where αn+1 is the leading coefficient of bn+1.
For k ≤ n a polynomial can be represented as

Pk (x) =
k∑
j=0

αjbj (x) and so (Pk(x), bn+1(x)) = 0.

Thus, we have n+ 1 points that cause the integral
above to vanish, so
e (f) =

∫ b

a
f [x0, ..., x2n+1, x] p (x)

∏2n+1
j=n+1(x− xj)dx,

where (x− xn+1) · · · (x− x2n+1) = p (x) and therefore

e (f) =
f (2n+2) (c)

(2n+ 2)!

∫ b

a

p2 (x)w (x) dx

Theorem 1.7. Let f(x) be 2n + 2 continuously dif-
ferentiable function on [a, b] and let w(x) be a weight
function. For the quadrature∫

f (x)w (x) dx =

n∑
j=0

Ajf (xj)

1. The optimal choice of interpolation points are
roots of n+1 orthogonal polynomial with respect
to w(x).

2. One find the coefficient using ether

• By solving linear system resulting by requir-
ing the rule be exact for f ∈ {1, x, x2, ..., xn},
or

• Using the formula Aj =
∫ b
a
lj (x)w (x) dx =∫ b

a

n∏
k=0

k 6=j

x−xj

xk−xj
w (x) dx

3. The algebraic exactness of the resulting method
is 2n+ 1.

Algorithm:

• Find the orthogonal polynomial with respect to
w(x) of order n+ 1.

• Choose the roots of the orthogonal polynomial
above to be interpolation points {xj}nn=0.

• Compute the coefficients Aj
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