Introduction to Numerical Analysis I Handout 11

1 Numerical Differentiation and Integration (cont)

1.2 Numerical Integration (cont)

1.2.1 Integration using Interpolation (cont)

Composite Rules All the priorly discussed quadratures implicitly considered $h \rightarrow 0$. We consider now a big interval $[a, b]$ divided into subintervals for integration.

Composite Trapezoidal Rule Consider a uniform $\operatorname{grid} x_{j}=a+j h$ where $j=0, \ldots, n$ and $h=\frac{b-a}{n}$ then

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\sum_{j=0}^{n} \int_{x_{j}}^{x_{j}+h=x_{j+1}} f(x) d x= \\
& \sum_{j=0}^{n}\left\{h \frac{f\left(x_{j}\right)+f\left(x_{j+1}\right)}{2}+O\left(h^{3}\right)\right\}= \\
& =\underbrace{\frac{b-a}{n}}_{h}\left(\frac{f(a)}{2}+\sum_{k=1}^{n-1} f\left(x_{j}\right)+\frac{f(b)}{2}\right)-\underbrace{n \cdot \frac{f^{\prime \prime}(c)}{12} h^{3}}_{O\left(h^{2}\right)}
\end{aligned}
$$

Note: The formula of the quadrature remains the same for any set $a=x_{0} \leq \ldots \leq x_{n}=b$.

Composite Simpson Rule Similarly, for the grid $x_{k}=a+k h, \quad h=\frac{b-a}{2 n}, k=0, \ldots, 2 n$ one gets

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\sum_{j=0}^{n-1} \frac{h}{3}\left\{f\left(x_{2 n}\right)+4 f\left(x_{2 n+1}\right)+f\left(x_{2 n+2}\right)+O\left(h^{5}\right)\right\} \\
& =\frac{h}{3}\left\{f(a)+2 \sum_{j=1}^{n-1} f\left(x_{2 n}\right)+4 \sum_{j=0}^{n-1} f\left(x_{2 n+1}\right)+f(b)+n O\left(h^{5}\right)\right\} \\
& =\frac{h}{3}\left\{f(a)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\ldots+f(b)\right\} \\
& -\frac{b-a}{2 h} \frac{h^{5}}{90} \max _{x \in[a, b]}\left\{\left|f^{(4)}(x)\right|\right\}
\end{aligned}
$$

Example 1.1. How many points required to approximate $\int_{0}^{\pi} \sin x d x$ with error bounded by 10^{-2} using composite Trapezoidal method.

$$
\begin{gathered}
\text { Since } \max _{x \in[0, \pi]}\left|\sin ^{(2)} x\right|=1 \text { one gets } \\
\left\lvert\, \frac{\left|\frac{f^{\prime \prime}(\xi)}{12} \pi h^{2}\right| \leqslant \frac{\pi}{12} h^{2} \leqslant 10^{-2}, \text { that is }}{\frac{\pi}{n}=h \leqslant \sqrt{\frac{12}{\pi} 10^{-2}} \approx \sqrt{0.038} \leqslant 0.2, \text { thus } n \geqslant 16 .}\right.
\end{gathered}
$$

1.2.2 Integration using polynomial basis

One develops quadratures using Algebraic Order of Exactness (similar to what we did with differentiation)

Trapezoidal Rule Consider a quadrature of the following form $\int_{a}^{b} f(x) d x \approx A_{0} f(a)+A_{1} f(b)$, exact for the $f=1$ and $f=x$. The linear system is

$$
\left\{\begin{array}{l}
\int_{a}^{b} 1 d x=b-a=A_{0}+A_{1} \\
\int_{a}^{b} x d x=\frac{b^{2}-a^{2}}{2}=a A_{0}+b A_{1}
\end{array}\right.
$$

and the solution is $A_{0}=A_{1}=\frac{b-a}{2}$, which gives the trapezoidal rule, and shows it has the algebraic exactness of 1 .

Simpson Rule Similarly consider quadrature of the form of $\int_{a}^{b} f(x) d x \approx A_{0} f(a)+A_{1} f\left(\frac{a+b}{2}\right)+A_{2} f(b)$ exact for $1, x$ and x^{2}. The linear system become

$$
\left\{\begin{array}{l}
\int_{a}^{b} 1 d x=b-a=A_{0}+A_{1}+A_{2} \\
\int_{a}^{b} x d x=\frac{b^{2}-a^{2}}{2}=a A_{0}+\frac{a+b}{2} A_{1}+b A_{2} \\
\int_{a}^{b} x^{2} d x=\frac{b^{3}-a^{3}}{3}=a^{2} A_{0}+\frac{(a+b)^{2}}{4} A_{1}+b^{2} A_{2}
\end{array}\right.
$$

which has a solution $\left(A_{0}, A_{1}, A_{2}\right)=\frac{b-a}{6}(1,4,1)$, which gives the Simpson's rule and shows it has the algebraic exactness of 2 .

1.2.3 Gaussian quadrature

We now developing quadratures for $\int_{a}^{b} w(x) f(x) d x$ where $w(x)$ denotes weight function.

Orthogonal Polynomials

Definition 1.2 (Vector Space (briefly)). A vector space V over a (scalar) field F is a set that is closed under finite vector addition $(u, v \in V \Rightarrow u+v \in V)$ and scalar multiplication $(c \in F, u \in V \Rightarrow c u \in V)$.

Definition 1.3 (Inner Product). Let V be a subspace of a vector space over a field of complex numbers $F \subset C$. Let $u, v \in V$. The function $(u, v): V \times V \mapsto C$ is called inner product if the following holds:

1. $(u, u) \geq 0$ and $(u, u)=0$ iff $u=0$.
2. $(u, v)=\overline{(v, u)}$ where \bar{u} is the complex conjugate of u; for V over reals $(u, v)=(v, u)$.
3. $\left(u_{1}+u_{2}, v\right)=\left(u_{1}, v\right)+\left(u_{2}, v\right)$ for $u_{1}, u_{2}, v \in V$.
4. $c(u, v)=(c u, v)=(u, \bar{c} v))$ for any scalar $c \in F$.

We concentrate in the V of continuous functions on an interval $[a, b]$ over reals and the inner product with the weight function $w(x) \geq 0$ as following:

$$
(f, g)=\int_{a}^{b} f(x) \overline{g(x)} w(x) d x \underset{F \subset R}{=} \int_{a}^{b} f(x) g(x) w(x) d x
$$

Definition 1.4 (Orthogonality). We say that the functions (vectors) f and g are orthogonal iff $(f, g)=0$.

Theorem 1.5 (The Gram-Schmidt Process). Let $\left\{b_{j}\right\}_{j=0}^{n}$ be some basis for a vector space V. The orthogonal basis $\left\{v_{j}\right\}_{j=0}^{n}$ is defined by
$v_{0}=b_{0}, \quad v_{k}=b_{k}-\sum_{j=0}^{k-1} \frac{v_{j}}{\left(v_{j}, v_{j}\right)}\left(b_{k}, v_{j}\right)$

Example 1.6.

1. Legender Polynomial: Interval $[a, b]=[-1,1]$, weight function $w(x)=1$.
Gram-Schmidt: Starting from $1, x, x^{2}, \ldots$:

$$
\begin{aligned}
& P_{0}(x)=1 \\
& P_{1}(x)=x-\frac{\left(x, P_{0}\right)}{\left(P_{0}, P_{0}\right)} P_{0}(x)=x-\frac{\int_{-1}^{1} x d x}{\int_{-1}^{1} d x}=x \\
& P_{2}(x)=x^{2}-\frac{\left(x^{2}, P_{0}\right)}{\left(P_{0}, P_{0}\right)} P_{0}(x)-\frac{\left(x^{2}, P_{1}\right)}{\left(P_{1}, P_{1}\right)} P_{1}(x)= \\
& =x^{2}-\frac{\int_{-1}^{1} x^{2} d x}{2}-\frac{\int_{-1}^{1} x^{3} d x}{\int_{-1}^{1} x^{2} d x} x=x^{2}-\frac{1}{3}
\end{aligned}
$$

Differential formula: $P_{n}(x)=\frac{(-1)^{n}}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left\{\left(1-x^{2}\right)^{n}\right\}$
Recursive formula: $P_{0}(x)=1 ; P_{1}(x)=x$;
$P_{n+1}(x)=\frac{2 n+1}{n+1} x P_{n}(x)-\frac{n}{n+1} P_{n-1}(x)$
2. Chebyshev Polynomial: Interval $[a, b]=[-1,1]$, weight function $w(x)=\frac{1}{\sqrt{1-x^{2}}}$
Direct formula: $T_{n}(x)=\cos (n \arccos x)$
Recursive formula: $T_{0}(x)=1 ; T_{1}(x)=x$;
$T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)$
3. Laguerre Polynomial: Interval $[a, b]=[0, \infty)$, weight function $w(x)=e^{-x}$
Differential fornula: $L_{n}(x)=\frac{e^{x}}{n!} \frac{d^{n}}{d x^{n}}\left(e^{-x} x^{n}\right)$
Recursive formula: $L_{0}(x)=1 ; L_{1}(x)=1-x$; $L_{n+1}(x)=\left(\frac{2 n+1-x}{n+1} L_{n}(x)-\frac{n}{n+1} L_{n-1}(x)\right)$
4. Hermite Polynomial: Interval $[a, b]=(-\infty, \infty)$, weight function $w(x)=e^{-x^{2}}$
Differential formula: $H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}}$
Recursive formula: $H_{0}(x)=1 ; H_{1}(x)=2 x$;
$H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x)$
Gaussian quadrature Recall that when the polynomial part of the error of interpolation $p(x)=(x-$ $\left.x_{0}\right) \ldots\left(x-x_{n}\right)$ is symmetrical in the domain of integration the integral is vanishes and therefore the error improves, i.e. moves to higher degree
$e(h)=\int_{a}^{b} f\left[x_{0}, \ldots, x_{n}, x\right] p(x) d x=f\left[x_{0}, \ldots, x_{n+1}\right] \int_{a}^{b} p(x) d x+$ $\int_{a}^{b} f\left[x_{0}, \ldots, x_{n+1}, x\right] p(x)\left(x-x_{n+1}\right) d x$. Since the formula is valid for any x_{n+1}, one chooses x_{n+1} such that $\int_{a}^{b} p(x)\left(x-x_{n+1}\right) d x=0$. Actually, it doesn't depends on x_{n+1}, but on $p(x)$, that is on interpolation points.

Given $f(x)$ is $2 n+2$ continuous differentiable, one choose interpolation points for $\int_{a}^{b} w(x) f(x) d x$ to be roots of the polynomial b_{n+1} orthogonal with respect to the weight function $w(x)$. That is, $p(x)=\frac{1}{\alpha_{n+1}} b_{n+1}$, where α_{n+1} is the leading coefficient of b_{n+1}.

For $k \leq n$ a polynomial can be represented as $P_{k}(x)=\sum_{j=0}^{k} \alpha_{j} b_{j}(x)$ and so $\left(P_{k}(x), b_{n+1}(x)\right)=0$.

Thus, we have $n+1$ points that cause the integral above to vanish, so
$e(f)=\int_{a}^{b} f\left[x_{0}, \ldots, x_{2 n+1}, x\right] p(x) \prod_{j=n+1}^{2 n+1}\left(x-x_{j}\right) d x$,
where $\left(x-x_{n+1}\right) \cdots\left(x-x_{2 n+1}\right)=p(x)$ and therefore

$$
e(f)=\frac{f^{(2 n+2)}(c)}{(2 n+2)!} \int_{a}^{b} p^{2}(x) w(x) d x
$$

Theorem 1.7. Let $f(x)$ be $2 n+2$ continuously differentiable function on $[a, b]$ and let $w(x)$ be a weight function. For the quadrature

$$
\int f(x) w(x) d x=\sum_{j=0}^{n} A_{j} f\left(x_{j}\right)
$$

1. The optimal choice of interpolation points are roots of $n+1$ orthogonal polynomial with respect to $w(x)$.
2. One find the coefficient using ether

- By solving linear system resulting by requiring the rule be exact for $f \in\left\{1, x, x^{2}, \ldots, x^{n}\right\}$, or
- Using the formula $A_{j}=\int_{a}^{b} l_{j}(x) w(x) d x=$ $\int_{a}^{b} \prod_{\substack{k=0 \\ k \neq j}}^{n} \frac{x-x_{j}}{x_{k}-x_{j}} w(x) d x$

3. The algebraic exactness of the resulting method is $2 n+1$.

Algorithm:

- Find the orthogonal polynomial with respect to $w(x)$ of order $n+1$.
- Choose the roots of the orthogonal polynomial above to be interpolation points $\left\{x_{j}\right\}_{n=0}^{n}$.
- Compute the coefficients A_{j}

