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1 Numerical Differentiation and
Integration (cont)

1.2 Numerical Integration (cont)
1.2.1 Integration using Interpolation (cont)

Composite Rules All the priorly discussed quadra-
tures implicitly considered i — 0. We consider now a
big interval [a,b] divided into subintervals for integra-
tion.

Composite Trapezoidal Rule Consider a uni-

form grid x; = a + jh where j =0,...,n and h = I’_T“
then
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Note: The formula of the quadrature remains the
same for any set a =z9 < ... <z, =b.

Composite Simpson Rule Similarly, for the grid
zy=a+kh, h="%% k=0,...,2n one gets
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Example 1.1. How many points required to approx-
imate foﬂ sinz dz with error bounded by 1072 using
composite Trapezoidal method.

Since max
z€[0,7]

L0mn?| < Hh? <1072, that is

T =h<4/22107% & /0.038 < 0.2, thus n > 16.

sin(Q)x’ = 1 one gets

1.2.2 Integration using polynomial basis

One develops quadratures using Algebraic Order of Ex-
actness (similar to what we did with differentiation)

Trapezoidal Rule Consider a quadrature of the fol-

lowing form f; f(x)dz =~ Aof (a) + Ay f (b), exact for
the f =1 and f = x. The linear system is
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and the solution is Ag = A; = >5%, which gives the
trapezoidal rule, and shows it has the algebraic exact-
ness of 1.

= aA() + bAl

Simpson Rule Similarly consider quadrature of the
form of [V f(z)dz ~ Aof (a) + Arf (%52) + Ao f (b)
exact for 1,z and x2. The linear system become
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which has a solution (Ag, A1, A2) = b_T“(l7 4,1), which
gives the Simpson’s rule and shows it has the algebraic
exactness of 2.

= ady+ 4L A +bA,

= CL2A0 + %Al + b2A2

1.2.3 Gaussian quadrature

We now developing quadratures for fabw (z) f (z) dx
where w(x) denotes weight function.

Orthogonal Polynomials

Definition 1.2 (Vector Space (briefly)). A vector
space V over a (scalar) field F' is a set that is closed
under finite vector addition (u,v € V = u+v € V)
and scalar multiplication (c € F,u € V = cu € V).

Definition 1.3 (Inner Product). Let V be a sub-
space of a vector space over a field of complex numbers
F c C. Let u,v € V. The function (u,v) : VXV = C
is called inner product if the following holds:

1. (u,u) >0 and (u,u) =0 iff u = 0.

2. (u,v) = (v,u) where @ is the complex conjugate
of u; for V' over reals (u,v) = (v, u).

3. (u1 +ug,v) = (ug,v) + (ug,v) for ur,us,v € V.

4. c(u,v) = (cu,v) = (u,cv)) for any scalar ¢ € F.



We concentrate in the V' of continuous functions on
an interval [a, b] over reals and the inner product with
the weight function w(z) > 0 as following:

b L b
(ho) = [ t@i@u@ds = [ fegud

Definition 1.4 (Orthogonality). We say that the
functions (vectors) f and g are orthogonal iff (f, g) = 0.

Theorem 1.5 (The Gram-Schmidt Process). Let
{bj}?:o be some basis for a vector space V. The or-

thogonal basis {v; }?:0 is defined by

k=1
vo = bo, v =br — Y %(bk,%)
§=0
Example 1.6.
1. Legender Polynomial: Interval [a,b] = [—1, 1],

weight function w(z) = 1.

Gram-Schmidt: Starting from 1,z, 22, .. .:

Po (x) =1
P L, zda
P (z) =z — (SfO,}gO)) Po(z) =2 — ffl dw T
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Differential formula: P, (z) = GUT 4% (1 - 22)"}

27 n! dxz™

Recursive formula: Py (z) =1; P; (z) = x;

Py () = 277_:r11xpn (z) = i1 €9)
2. Chebyshev Polynomial: Interval [a,b] = [—1, 1],
weight function w (z) = 1171’2

Direct formula: T, (z) = cos (n arccos x)

Recursive formula: Tp (z) = 1; Ty (x) = ;
Tht1 (z) = 22T, () — Th—1 ()

3. Laguerre Polynomial: Interval [a,b] = [0, c0),
weight function w (z) = e™*

Differential fornula: L,, (z) = %(ZC—W; (e7%z™)

Recursive formula: Lo (z) = 1; Ly () =1 — x;
Lot () = (25555 L0 (@) = 7 Ln (2)

4. Hermite Polynomial: Interval [a,b] = (—o00, 0),
weight function w () = e~

Differential formula: H, (z) = (—1)”69”2 d‘i:ne_mz

Recursive formula: Hy (z) = 1; Hy (z) = 2x;
Hpi1 () =2xH, (x) — 2nHp,—q (x)

Gaussian quadrature Recall that when the polyno-
mial part of the error of interpolation p(z) = (z —
xg)...(x — xp) is symmetrical in the domain of inte-
gration the integral is vanishes and therefore the error
improves, i.e. moves to higher degree

e(h) = fabf [0y ooy T, x] p (2) dz = [ |20, ...

fab f w0, .., Tnt1, ] p (z) (x — Tny1) dx. Since the formula

is valid for any z, 11, one chooses x,,+1 such that

f:p (z) (x — xpa1) dz = 0. Actually, it doesn’t depends

on x,41, but on p(x), that is on interpolation points.
Given f(z) is 2n + 2 continuous differentiable, one

choose interpolation points for fab w (z) f (z) dx to be
roots of the polynomial b,,;1 orthogonal with respect
to the weight function w(x). That is, p(x) = ﬁbwrh
where au, 41 is the leading coefficient of b, 1.

For k£ < n a polynomial can be represented as

Py (x) = ﬁ:oajbj (z) and so (Px(x),bps1(x)) = 0.

Thus, we have n 4+ 1 points that cause the integral
above to vanish, so

e(f) = [ f 2o, ooy T2ns1, 2] p (2) [ (& — ay)de,
where (x — x,41) -+ (x — Zap+1) = p (2) and therefore
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Theorem 1.7. Let f(x) be 2n + 2 continuously dif-
ferentiable function on [a,b] and let w(x) be a weight
function. For the quadrature

/ f@)w(@)de =Y 4 (z;)
§=0

1. The optimal choice of interpolation points are
roots of n+1 orthogonal polynomial with respect
to w(x).

2. One find the coefficient using ether

e By solving linear system resulting by requir-
ing the rule be exact for f € {1,z,2%, ..., 2"},
or

e Using the formula A4; = fab L (z)w(x)de =
b T—T;
[ T1 row (v) da
k=0
KEi

3. The algebraic exactness of the resulting method
is 2n 4+ 1.

Algorithm:

e Find the orthogonal polynomial with respect to
w(z) of order n + 1.

e Choose the roots of the orthogonal polynomial
above to be interpolation points {x;}1_,.

e Compute the coeflicients A;

L p(x)dz+



	Numerical Differentiation and Integration (cont)
	Numerical Integration (cont)
	Integration using Interpolation (cont)
	Integration using polynomial basis
	Gaussian quadrature



