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1 Numerical Differentiation and Integration

We developed a tool (interpolation) which will serve
us in future as following: Given Pn(x) is a polyno-
mial interpolation of f(x), for each linear operator L
we have

Lf (x) ≈ LPn (x)

and the error given by

e (x) = L [f (x)− Pn (x)] = Lf {[x0, . . . , xn, x] p (x)}

where p (x) =
n∏
k=0

(x− xk).

1.1 Numerical Differentiation/Finite Differences

Definition 1.1 (First Numerical Derivative).
Let Pn(x) be polynomial interpolation of f(x) at in-
terpolation points {xk}nk=0, then

f ′ (x) = P ′n (x) +
d

dx
{f [x0, . . . , xn, x] p (x)}

The error is given by

e(x) = f ′(x)− P ′n(x) =
d

dx
{f [x0, . . . , xn, x] p (x)} =

= f [x0, . . . , xn, x] p′ (x) + p (x)
d

dx
f [x0, . . . , xn, x]

From the term d
dxf [x0, . . . , xn, x] we learn that we

need to differentiate divided differences.

Definition 1.2 (Derivative of DD).

d

dx
f [x0, . . . , xk, x] =

lim
h→0

f [x0, . . . , xk, x + h]− f [x0, . . . , xk, x]

h
=

lim
h→0

f [x0, . . . , xk, x, x + h] = f [x0, . . . , xk, x, x]

Finally, given that f(x) have n + 2 derivatives,
the error formula is

e (x) = f ′(x)− P ′n(x) =

f [x0, . . . , xn, x] p′ (x) + p (x) f [x0, . . . , xn, x, x] =

=
f (n+1) (c)

(n + 1)!
p′ (x) +

f (n+2) (c̃)

(n + 2)!
p (x)

Note that in the simplest case, one of the poly-
nomial parts p(x) or p′(x) vanishes.

Example 1.3.

f (x) ≈ P2 (x) = f [a] + f [a, a+ h] (x− a)

f ′ (x) ≈ f (a+ h)− f (a)

h
+

f (2) (c)

2
((x− a− h) + (x− a))+

f (3) (c̃)

6
(x− a) (x− a− h)

Thus,

f ′ (a) ≈ f (a + h)− f (a)

h
− h

2
f (2) (c)

Example 1.4. We previously found sinx ≈ P3 (x) =
4
πx −

4
π2x

2, therefore cosx sin’x ≈ d
dxP3 (x) = 4

π −
8
π2x ≈ 1.27− 0.81x

Definition 1.5 (Higher order Numerical Differ-
entiation). Let Pn(x) be polynomial interpolation
of f(x) at interpolation points {xk}nk=0. Suppose
that f(x) have n + m + 1 derivatives (m ≤ n), then

f (m) (x) = P (m)
n (x) +

dm

dxm
{f [x0, . . . , xk, x] p (x)}

And the error is given by

e (x) = f (m)(x)− P
(m)
n (x) =

dm

dxm
{f [x0, . . . , xk, x] p (x)} =

dm−1

dxm−1

{
f [x0, . . . , xn, x] p

′ (x) + f [x0, . . . , xn, x, x] p (x)
}
=

dm−2

dxm−2

{
f [x0, . . . , xn, x] p

′′ (x) + 2f [x0, . . . , xn, x, x] p
′ (x)+

f [x0, . . . , xn, x, x, x] p (x)} = · · ·

Definition 1.6 (Forward (Backward) Differences:).

(partially) uses interpolation points {a+ jh}nj=0

(
{a− jh}nj=0

)
Definition 1.7 (Central Differences:). (partially)
uses interpolation points {a+ jh}nj=0∪{a− jh}nj=0 sym-
metrically.

Theorem 1.8. Let m be an integer and let n +
1 = 2m. Given interpolation points x0 ≤ ... ≤ xn
symmetrically distributed around a point a, that is
a− x(m−1)−k = − (a− xm+k) or alternatively

a =
x(m−1)−k + xm+k

2

for any k, then d
dx

n∏
k=0

(x− xk)

∣∣∣∣
x=a

= 0.
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1.1.1 Developing FD schemes using Polyno-
mial Basis

Definition 1.9 (The order of approximation).
The order of approximation is defined to be the min-
imal p that satisfies the following inequality

|e(x)| ≤ chp = O(hp),

where e(x) is the error of approximation and

min
i 6=j
|xi − xj | 6 h 6 max

i 6=j
|xi − xj | .

Example 1.10. For example the central difference
formula for the first derivative has a first order, that
is of second order, since

f ′ (a) =
f (a + h)− f (a− h)

2h
+ O(h2)

Definition 1.11 (Algebraic Order of Exactness).
An approximation method has an algebraic order of
exactness p if p is the maximal degree of a polyno-
mial for which the approximation provides an exact
solution.

Example 1.12. For example consider Polynomial
basis {1, x, x2, x3, ...} The forward formula gives a
first order

f ′ (a) ≈ f (a+ h)− f (a)

h

f = 1⇒ 1− 1

h
= 0 = f ′

f = x⇒ x+ h− x

h
= 1 = f ′

f = x2 ⇒ (x+ h)2 − x2

h
=

2xh+ h2

h
= 2x+O (h)

The latest example provide an algorithm to cre-
ate FD schemes. Let D be differential operator. To

approximate D at point a by Df(a) =
p∑
j=1

cjf(a+jh)

one solves the following linear system of equation
D 1
D x
...
D xp




c1
c2
...
cp

 =


D 1
D x
...

D xp


Example 1.13. Let f ′ (a) ≈ c1f (a) + c2f (a− h).
To find c1, c2 solve

f = 1⇒ c1 + c2 = 0⇒ c2 = −c1
f = x⇒ c1a + c2 (a− h) = 1

To get the backward formula f ′ (a) ≈ f(a)−f(a−h)
h

1.1.2 Developing FD schemes using Taylor
Expansion

Consider f ′ (a) ≈ c1f (a) + c2f (a− h) + c3f (a + h)
The Taylor expansion gives

f (a) = f (a)

f (a± h) = f (a)± hf ′ (a) + h2

2
f ′′ (a)± h3

6
f (3) (a) +O

(
h4)

Rewrite in the matrix form 1 0 0
1 1 1
1 −1 1

 f (a)
hf ′ (a)
h2

2
f ′′ (a)

 =

 f (a)
f (a+ h)
f (a− h)

+O
(
h3)

We don’t need to solve the linear system. One writes

f (a± h)− f (a) = ±hf ′ (a) + h2

2 f ′′ (a) +O
(
h3
)

Subtract between the (±) equations to get f (a + h)−
f (a− h) = 2hf ′ (a) +O

(
h3
)

then solve for f ′(a) to
get the central formula. Similarly, add between the
equations to get

f (a + h)− 2f (a) + f (a− h) = h2f ′′ (a) +O
(
h4
)

⇒ f ′′ (a) =
f (a + h)− 2f (a) + f (a− h)

h2
+O

(
h2
)

1.1.3 Sensitivity to error

Let f̃ (x) = f (x) + ẽ (x) and assume |ẽ (xj)| 6 ε
and

∣∣f3 (x)
∣∣ 6 M . Use the central formula for first

derivative f ′ (a) = f(a+h)−f(a−h)
2h − f(3)(c)

6 h2.
Then

f̃ ′ (a) =
f (a + h)− f (a− h)

2h
− f (3) (c)

6
h2+

ẽ (a + h)− ẽ (a− h)

2h
Thus, the error is

e (x) =

∣∣∣∣−f (3) (c)

6
h2 +

ẽ (a + h)− ẽ (a− h)

2h

∣∣∣∣ 6∣∣∣∣M6 h2

∣∣∣∣+
|ẽ (a + h)|+ |ẽ (a− h)|

2h
=

∣∣∣∣M6 h2

∣∣∣∣+
ε

h
→
h→0
∞

To find the optimal value of h one solves

e′ (x) =
M

3
h− ε

h2
= 0

to get h = 3

√
3
M ε. See the graph of e(x) below.

2


	Numerical Differentiation and Integration
	Numerical Differentiation/Finite Differences
	Developing FD schemes using Polynomial Basis
	Developing FD schemes using Taylor Expansion
	Sensitivity to error



