Introduction to Numerical Analysis I Handout 9

1 Numerical Differentiation and Integration

We developed a tool (interpolation) which will serve us in future as following: Given $P_{n}(x)$ is a polynomial interpolation of $f(x)$, for each linear operator L we have

$$
L f(x) \approx L P_{n}(x)
$$

and the error given by
$e(x)=L\left[f(x)-P_{n}(x)\right]=L f\left\{\left[x_{0}, \ldots, x_{n}, x\right] p(x)\right\}$
where $p(x)=\prod_{k=0}^{n}\left(x-x_{k}\right)$.

1.1 Numerical Differentiation/Finite Differences

Definition 1.1 (First Numerical Derivative). Let $P_{n}(x)$ be polynomial interpolation of $f(x)$ at interpolation points $\left\{x_{k}\right\}_{k=0}^{n}$, then

$$
f^{\prime}(x)=P_{n}^{\prime}(x)+\frac{d}{d x}\left\{f\left[x_{0}, \ldots, x_{n}, x\right] p(x)\right\}
$$

The error is given by

$$
\begin{array}{r}
e(x)=f^{\prime}(x)-P_{n}^{\prime}(x)=\frac{d}{d x}\left\{f\left[x_{0}, \ldots, x_{n}, x\right] p(x)\right\}= \\
\quad=f\left[x_{0}, \ldots, x_{n}, x\right] p^{\prime}(x)+p(x) \frac{d}{d x} f\left[x_{0}, \ldots, x_{n}, x\right]
\end{array}
$$

From the term $\frac{d}{d x} f\left[x_{0}, \ldots, x_{n}, x\right]$ we learn that we need to differentiate divided differences.

Definition 1.2 (Derivative of DD).

$$
\begin{aligned}
& \frac{d}{d x} f\left[x_{0}, \ldots, x_{k}, x\right]= \\
& \lim _{h \rightarrow 0} \frac{f\left[x_{0}, \ldots, x_{k}, x+h\right]-f\left[x_{0}, \ldots, x_{k}, x\right]}{h}= \\
& \lim _{h \rightarrow 0} f\left[x_{0}, \ldots, x_{k}, x, x+h\right]=f\left[x_{0}, \ldots, x_{k}, x, x\right]
\end{aligned}
$$

Finally, given that $f(x)$ have $n+2$ derivatives, the error formula is

$$
\begin{aligned}
& e(x)=f^{\prime}(x)-P_{n}^{\prime}(x)= \\
& f\left[x_{0}, \ldots, x_{n}, x\right] p^{\prime}(x)+p(x) f\left[x_{0}, \ldots, x_{n}, x, x\right]= \\
&=\frac{f^{(n+1)}(c)}{(n+1)!} p^{\prime}(x)+\frac{f^{(n+2)}(\tilde{c})}{(n+2)!} p(x)
\end{aligned}
$$

Note that in the simplest case, one of the polynomial parts $p(x)$ or $p^{\prime}(x)$ vanishes.

Example 1.3.

$f(x) \approx P_{2}(x)=f[a]+f[a, a+h](x-a)$
$f^{\prime}(x) \approx \frac{f(a+h)-f(a)}{h}+\frac{f^{(2)}(c)}{2}((x-a-h)+(x-a))+$ $\frac{f^{(3)}(\tilde{c})}{6}(x-a)(x-a-h)$
Thus,

$$
f^{\prime}(a) \approx \frac{f(a+h)-f(a)}{h}-\frac{h}{2} f^{(2)}(c)
$$

Example 1.4. We previously found $\sin x \approx P_{3}(x)=$ $\frac{4}{\pi} x-\frac{4}{\pi^{2}} x^{2}$, therefore $\cos x \sin ^{\prime} x \approx \frac{d}{d x} P_{3}(x)=\frac{4}{\pi}-$ $\frac{8}{\pi^{2}} x \approx 1.27-0.81 x$

Definition 1.5 (Higher order Numerical Differentiation). Let $P_{n}(x)$ be polynomial interpolation of $f(x)$ at interpolation points $\left\{x_{k}\right\}_{k=0}^{n}$. Suppose that $f(x)$ have $n+m+1$ derivatives $(m \leq n)$, then

$$
f^{(m)}(x)=P_{n}^{(m)}(x)+\frac{d^{m}}{d x^{m}}\left\{f\left[x_{0}, \ldots, x_{k}, x\right] p(x)\right\}
$$

And the error is given by

$$
\begin{aligned}
& e(x)=f^{(m)}(x)-P_{n}^{(m)}(x)=\frac{d^{m}}{d x^{m}}\left\{f\left[x_{0}, \ldots, x_{k}, x\right] p(x)\right\}= \\
& \frac{d^{m-1}}{d x^{m-1}}\left\{f\left[x_{0}, \ldots, x_{n}, x\right] p^{\prime}(x)+f\left[x_{0}, \ldots, x_{n}, x, x\right] p(x)\right\}= \\
& \frac{d^{m-2}}{d x^{m-2}}\left\{f\left[x_{0}, \ldots, x_{n}, x\right] p^{\prime \prime}(x)+2 f\left[x_{0}, \ldots, x_{n}, x, x\right] p^{\prime}(x)+\right. \\
& \left.f\left[x_{0}, \ldots, x_{n}, x, x, x\right] p(x)\right\}=\cdots
\end{aligned}
$$

Definition 1.6 (Forward (Backward) Differences:).
(partially) uses interpolation points $\{a+j h\}_{j=0}^{n}\left(\{a-j h\}_{j=0}^{n}\right)$
Definition 1.7 (Central Differences:). (partially) uses interpolation points $\{a+j h\}_{j=0}^{n} \cup\{a-j h\}_{j=0}^{n}$ symmetrically.
Theorem 1.8. Let m be an integer and let $n+$ $1=2 m$. Given interpolation points $x_{0} \leq \ldots \leq x_{n}$ symmetrically distributed around a point a, that is $a-x_{(m-1)-k}=-\left(a-x_{m+k}\right)$ or alternatively

$$
a=\frac{x_{(m-1)-k}+x_{m+k}}{2}
$$

for any k, then $\left.\frac{d}{d x} \prod_{k=0}^{n}\left(x-x_{k}\right)\right|_{x=a}=0$.

1.1.1 Developing FD schemes using Polynomial Basis

Definition 1.9 (The order of approximation). The order of approximation is defined to be the minimal p that satisfies the following inequality

$$
|e(x)| \leq c h^{p}=O\left(h^{p}\right)
$$

where $e(x)$ is the error of approximation and

$$
\min _{i \neq j}\left|x_{i}-x_{j}\right| \leqslant h \leqslant \max _{i \neq j}\left|x_{i}-x_{j}\right|
$$

Example 1.10. For example the central difference formula for the first derivative has a first order, that is of second order, since

$$
f^{\prime}(a)=\frac{f(a+h)-f(a-h)}{2 h}+O\left(h^{2}\right)
$$

Definition 1.11 (Algebraic Order of Exactness). An approximation method has an algebraic order of exactness p if p is the maximal degree of a polynomial for which the approximation provides an exact solution.

Example 1.12. For example consider Polynomial basis $\left\{1, x, x^{2}, x^{3}, \ldots\right\}$ The forward formula gives a first order

$$
\begin{aligned}
& f^{\prime}(a) \approx \frac{f(a+h)-f(a)}{h} \\
& f=1 \Rightarrow \frac{1-1}{h}=0=f^{\prime} \\
& f=x \Rightarrow \frac{x+h-x}{h}=1=f^{\prime} \\
& f=x^{2} \Rightarrow \frac{(x+h)^{2}-x^{2}}{h}=\frac{2 x h+h^{2}}{h}=2 x+O(h)
\end{aligned}
$$

The latest example provide an algorithm to create FD schemes. Let D be differential operator. To approximate D at point a by $\mathcal{D} f(a)=\sum_{j=1}^{p} c_{j} f(a+j h)$ one solves the following linear system of equation

$$
\left(\begin{array}{c}
\mathcal{D} 1 \\
\mathcal{D} x \\
\vdots \\
\mathcal{D} x^{p}
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{p}
\end{array}\right)=\left(\begin{array}{c}
D 1 \\
D x \\
\vdots \\
D x^{p}
\end{array}\right)
$$

Example 1.13. Let $f^{\prime}(a) \approx c_{1} f(a)+c_{2} f(a-h)$. To find c_{1}, c_{2} solve

$$
\begin{gathered}
f=1 \Rightarrow c_{1}+c_{2}=0 \Rightarrow c_{2}=-c_{1} \\
f=x \Rightarrow c_{1} a+c_{2}(a-h)=1
\end{gathered}
$$

To get the backward formula $f^{\prime}(a) \approx \frac{f(a)-f(a-h)}{h}$

1.1.2 Developing FD schemes using Taylor Expansion

Consider $f^{\prime}(a) \approx c_{1} f(a)+c_{2} f(a-h)+c_{3} f(a+h)$
The Taylor expansion gives
$f(a)=f(a)$
$f(a \pm h)=f(a) \pm h f^{\prime}(a)+\frac{h^{2}}{2} f^{\prime \prime}(a) \pm \frac{h^{3}}{6} f^{(3)}(a)+\mathcal{O}\left(h^{4}\right)$
Rewrite in the matrix form
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & -1 & 1\end{array}\right]\left[\begin{array}{c}f(a) \\ h f^{\prime}(a) \\ \frac{h^{2}}{2} f^{\prime \prime}(a)\end{array}\right]=\left[\begin{array}{c}f(a) \\ f(a+h) \\ f(a-h)\end{array}\right]+O\left(h^{3}\right)$
We don't need to solve the linear system. One writes

$$
f(a \pm h)-f(a)= \pm h f^{\prime}(a)+\frac{h^{2}}{2} f^{\prime \prime}(a)+\mathcal{O}\left(h^{3}\right)
$$

Subtract between the (\pm) equations to get $f(a+h)-$ $f(a-h)=2 h f^{\prime}(a)+\mathcal{O}\left(h^{3}\right)$ then solve for $f^{\prime}(a)$ to get the central formula. Similarly, add between the equations to get
$f(a+h)-2 f(a)+f(a-h)=h^{2} f^{\prime \prime}(a)+\mathcal{O}\left(h^{4}\right)$
$\Rightarrow f^{\prime \prime}(a)=\frac{f(a+h)-2 f(a)+f(a-h)}{h^{2}}+\mathcal{O}\left(h^{2}\right)$

1.1.3 Sensitivity to error

Let $\tilde{f}(x)=f(x)+\tilde{e}(x)$ and assume $\left|\tilde{e}\left(x_{j}\right)\right| \leqslant \varepsilon$ and $\left|f^{3}(x)\right| \leqslant M$. Use the central formula for first derivative $f^{\prime}(a)=\frac{f(a+h)-f(a-h)}{2 h}-\frac{f^{(3)}(c)}{6} h^{2}$.

Then
$\tilde{f}^{\prime}(a)=\frac{f(a+h)-f(a-h)}{2 h}-\frac{f^{(3)}(c)}{6} h^{2}+$ $\frac{\tilde{e}(a+h)-\tilde{e}(a-h)}{2 h}$
Thus, the error is
$e(x)=\left|-\frac{f^{(3)}(c)}{6} h^{2}+\frac{\tilde{e}(a+h)-\tilde{e}(a-h)}{2 h}\right| \leqslant$ $\left|\frac{M}{6} h^{2}\right|+\frac{|\tilde{e}(a+h)|+|\tilde{e}(a-h)|}{2 h}=\left|\frac{M}{6} h^{2}\right|+\frac{\varepsilon}{h} \underset{h \rightarrow 0}{\rightarrow} \infty$
To find the optimal value of h one solves

$$
e^{\prime}(x)=\frac{M}{3} h-\frac{\varepsilon}{h^{2}}=0
$$

to get $h=\sqrt[3]{\frac{3}{M} \varepsilon}$. See the graph of $e(x)$ below.

