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1 Interpolation

We represent functions by finite table (xi, f(xi)), which
is not unique and consist irreversible lost of data.

Definition 1.1. Let f be known at points {xi}ni=0.
Obtaining the value of f at x ∈ [x0, xn] from the
known data (xi, f(xi)) is called interpolation. A
function used to generate interpolation is called in-
terpolant.

Obtaining the value of f at x /∈ [x0, xn] from the
known data (xi, f(xi)) is called extrapolation.
The extrapolation is less accurate then interpolation,
but other than that it uses the same formulas as in-
terpolation.

We use polynomials for interpolation.

Theorem 1.2. Weierstrass Approximation Theorem
Let f(x) be continues function on an interval [a, b]
and let ε > 0, then there exists a polynomial P (x)
such that |f(x) − P (x)| < ε. Note that it is not
required that f be differentiable.

1.1 Polynomials

One of the standard notations for n’th order polyno-

mials is Pn(x) =
n∑

k=0

akx
k or Pn(x) =

n∑
k=0

ak(x−x0)k,

where an 6= 0, and the most general form is

Pn(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + ++

an(x− x0) · · · (x− xn−1)

Horner’s Rule is the efficient method to compute
polynomials, given here for the most general third
form (it is easy to reduce it for the other forms)

(((an(x− xn−1) + an−1) (x− xn−2)

+an−2) (x− xn−3) + an−3) · · · a0

The properties of polynomials are following

• The polynomial is uniquely identified by its co-

efficients e.g.
n∑

k=0

akx
k =

n∑
k=0

bkx
k iff ak = bk.

• A polynomial of order n ≥ 1 has up to n real
roots. The only n’th order polynomial with
more then n roots is a zero polynomial.

• There is unique n’th order polynomial that in-
tersects with n+ 1 points.

• It is very easy to compute, integrate or differ-
entiate polynomials.

1.2 Polynomial Interpolation (PI)

Definition 1.3. Let the data known by yk = f(xk)
be given by a table (xk, yk)nk=0. The Polynomial In-
terpolation for f at points {xk}nk=0 is at least n’th
order polynomial Pn(x) that satisfy the interpola-
tion condition Pn(xk) = yk for all 0 ≤ k ≤ n.

There is more then one polynomial that satisfies
Pn(xk) = yk, but there is unique one that has the
order ≤ n.

Theorem 1.4 (Existence & Uniqueness of PI).
Let f be a function defined in [a, b], for any set of dif-
ferent points {xk}nk=0 there exists unique polynomial
of order ≤ n.
Proof: Interpolation condition Pn(xk) = yk creates
linear system of equation for the coefficients ak, the
resulting matrix is Vandermunde, which is non sin-
gular as long as {xk}nk=0 are different.

The proof suggests using Vandermonde for inter-
polation, however Inverting Vandermonde is numer-
ically unstable process and also takes O(n3) compu-
tational steps for n× n matrix.

1.3 Lagrange Interpolation

Lagrange Polynomial reads for Pn (x) =
n∑

k=0

lk,n (x) f (xk)

where lk,n (x) =
l̃k,n(x)

l̃k,n(xk)
= δk,i =

{
1 i = k

0 else
and

l̃k,n (x) = (x− x0) · · · (x− xk−1) (x− xk+1) · · · (x− xn).

Note that l̃k,n (xj) = 0 for j 6= k, which gives

Pn (xj) =

n∑
k=0

lk,n (xj) f (xk) =
l̃j,n (xj)

l̃j,n (xj)
f (xj) = f (xj)

1.4 Newton Interpolation

We would like to construct an interpolation polyno-
mial of the third form.

Proposition 1.5. If

Pn(x) = a0 · · ·+ ak(x− x0) · · · (x− xk−1) · · ·
+an(x− x0) · · · (x− xn−1)
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is the polynomial interpolation of function f(x) at
points x0, · · · , xn then the polynomial

Pn(x) = a0 + + + ak(x− x0) · · · (x− xk−1)

is the polynomial interpolation of function f(x) at
points x0, · · · , xk.

Corollary 1.6. If Pk and Pk−1 are polynomial in-
terpolation of f(x) at points x0, ..., xk, x0, ..., xk−1

respectively. Then

Pk(x) = Pk−1(x) + ak(x− x0) · · · (x− xk−1).

Furthermore, aj depends only on x0, ..., xj , but not
on xj+1, ..., xk.

Definition 1.7 (Divided Differences (DD)). Con-
sider set of points {xk}nk=0. For each point xk define
f [xk] = f(xk). For any set of points x0, ..., xk with
xk 6= x0 the divided differences are defined as

f [x0, ..., xk] =
f [x1, ..., xk]− f [x0, ..., xk−1]

xk − x0
Proposition 1.8.

Pn (x) = f [x0] + f [x0, x1] (x− x0) + ++

f [x0, ..., xn] (x− x0) · · · (x− xn−1)

In other words, a0 = f [x0], a1 = f [x0, x1], ak =
f [x0, x1, ..., xk] for 0 ≤ k ≤ n.

Proposition 1.9. f [x0, ..., xk] is independent of the
order of the points.
Proof: Since f [x0, ..., xk] is the leading coefficient
of the polynomial interpolation. Since the polyno-
mial interpolation is independent of the order of the
points and unique, its leading coefficient should also
be independent of the order of the points.

The convenient way to construct DD is the tri-
angular table as following (the required coefficient
underlined):

x0 f [x0]

f [x0, x1] =
f [x1]−f [x0]

x1−x0

x1 f [x1] f [x0, x1, x2] = · · ·
f [x1, x2] =

f [x2]−f [x1]
x2−x1

x2 f [x2]

1.5 Adding a point

Assume we add a new point (xn+1, yn+1) to Pn. The
additional work to do in direct (Vandermonde), La-
grange and Newton’s methods is:

1. Direct: Recalculate from the start, i.e. O
(
n3
)
.

2. Lagrange: multiply each li (x) by x−xn+1

xi−xn+1
and

calculate ln+1 (x). That’s O
(
n2
)

operations.

3. Newton: Add a line to the triangle - O (n).

1.6 Interpolation Error

Theorem 1.10. Let f(x) be defined in [a, b] and
let Pn(x) be PI of f(x) at points {xk}nk=0 ⊂ [a, b],
then the interpolation error for x ∈ [a, b] is given by

e (x̃) = f(x) − Pn(x) = f [x0, . . . , xn, x̃]
n∏

k=0

(x̃− xk)

Proof: Since Pn(x) is polynomial interpolation of
f(x), we have e (x̃k) = f(xk) − Pn(xk) = 0 for
any of {xk}nk=0. Let x̃ /∈ {xk}nk=0 be new inter-
polation point and let construct new interpolation

point Pn+1(x) = Pn(x)+f [x0, . . . , xn, x̃]
n∏

j=0

(x− xj)

therefore e (x̃) = f (x̃)−Pn (x̃) = Pn+1 (x̃)−Pn (x̃) =

f [x0, . . . , xn, x̃]
n∏

j=0

(x̃− xj)

Definition 1.11. A polynomial is called a monic
polynomial if its leading coefficient (the nonzero co-
efficient of highest degree) is equal to 1.

Proposition 1.12. (x− x0) · · · (x− xn) is monic.

Corollary 1.13. Pn(x) = f [x0, ..., xn]xn+Qn−1(x).

Theorem 1.14. Let f(x) ∈ Cn in [a, b] and let
{xk}nk=0 ⊂ [a, b]. There is exists c ∈ [a, b] such that

f [x0, ..., xn] =
f (n)(c)

n!

Corollary 1.15. e (x) = f(n+1)(c)
(n+1)!

n∏
k=0

(x− xk)

One bounds the error by |e (x)| 6
max

x06x6xn
|f(n+1)(x)|

(n+1)! |p (x)|
Note the two factors of the error.

1. |f (n+1)| - uncontrollable and may be affected
round off error etc.

2. p (x) =
n∏

k=0

|x− xk| 6 |b− a|n+1
. The later ap-

proximation is coarse. For the better one we
need more information about p(x) or xk. The
common choice is uniform grid , i.e. xj =
x0 + jh, h = b−a

n then p(x) is bounded by

hn+1

4 n! and |e (x)| 6
hn+1 max

x06c6xn
|f(n+1)(c)|

4(n+1) .
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0.20The error grows near
the ends of the inter-
val with uniform grid.
Thus, stay away from
the ends, i.e. work
inside the interval. See

the figure of
n∏

j=0

|x− j 2−0
n | on [a, b] = [0, 2] for

n ∈ {3, 4, 5}.

Conclusion: It is recommended to avoid using in-
terpolation by high order polynomials.
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