
Introduction to Numerical Analysis I
Handout 5

1 Root finding

We consider equation f(x) = 0.

1.2 Fixed Point Iteration

Consider a sequence {xn}∞n=0 given by

xn+1 = g(xn).

Each member of the sequence xn is denoted an iter-
ation and the function g is the iteration function.
The main idea is that if xn → x̄ and g is continuous
then

x̄ = lim
n→∞

xn+1 = lim
n→∞

g(xn+1) = g(x̄).

Definition 1.1. A point x ∈ X is called a fixed
point of a function g : X → X if and only if x = g(x).

Example 1.2. How to manipulate f to get fixed
point iteration

1. The first option is to rewrite the formula such
that x is be on the right hand side, for example
f(x) = x2 − 2x − 3 can be rewritten as x =
(x2 − 3)/2 = g(x) and then

xn+1 = (x2n − 3)/2 = g(x).

2. The other option g(f(x), x) = f(x) + x = x
and then

xn+1 = f(xn) + xn.

3. And even g(f(x), x) = f(x)h(x) + x = x for
h(x) 6= 0 and then

xn+1 = f(xn)h(xn) + xn.

For example the Newton method suggests h(x) =
−1/f ′(x).

Theorem 1.3 (Fixed Point Theorem). Let g(x)
be differentiable function in a closed interval I =
[a, b]. If

• g(x) ⊂ I for each x ∈ I and

• |g′(x)| < 1 for each x ∈ I

then g is fixed point iteration function and there is
unique x̄ ∈ I such that g(x̄) = x̄. In this case xn+1 =
g(xn)→ x̄ for any initial guess x0 ∈ I. Furthermore,
there is exists a number 0 < L < 1 such that en =
|xn+1 − x| ≤ L|xn − x|.
Proof: Existence: If g(a) = a or g(b) = b then we
done. Otherwise, let h(x) = g(x) − x. Since since
a < g(x) < b it comes that h(a) = g(a)− a > 0 and
h(b) = g(b)− b < 0 and therefore there is x̄ ∈ I such
that 0 = h(x̄) = g(x̄)− x̄. Thus x̄ = g(x̄).
Uniqueness: Assume g has two different fixed points
x̄1 6= x̄2 in I. In this situation h(x̄1) = 0 = h(x̄2)
and therefore, by Roll’s theorem, there is c ∈ I such
that h′(c) = 0. However h′(c) = g′(c) − 1 = 0
means g′(c) = 1 which contradicts the assumption
that |g′(x)| < 1 for each x ∈ I.
Convergence:

|xn+1 − x|
|xn − x|

=
|g(xn)− g(x)|
|xn − x|

→ L = |g′(xn)| < 1

Thus en = |xn+1 − x| ≤ L|xn − x|
Note: Actually, the requirement that g′ is dif-

ferentiable at the root is too strong. One may re-
quire instead that g is Lipschitz continues, that is
there is a Lipschitz constant 0 < L < 1 such that
|g(x)− g(y)| ≤ L|x− y| for any x, y ∈ I. Any differ-
entiable function is necessarily satisfy this condition
with L = max

x
g′(x).

Theorem 1.4 (Another Useful Theorem). Let
g ∈ C2 be twice continuously differentiable fixed point
iteration and let x̄ = g(x̄) be iteration point. If
g′(x̄) < 1 then there is a neighborhood N(x̄), s.t.
xn → x̄ for any initial guess x0 = N(x̄).

1.2.1 Convergence Rate

Consider linear approximation of the error: en+1 =
xn+1−r = −r+g(xn) = −r+g(r+en) ≈�����−r + g(r)+
eng
′(r) = eng

′(r). Thus we learn that |en+1| ≈
|en| · |g′(r)| and that the smaller |g′(r)| the faster
the convergence. Furthermore, consider the Taylor
expansion of the error

en+1 ≈�����−r + g(r)+

N∑
k=1

ekn
k!
g(n)(r)+

eN+1
n

(N + 1)!
g(N+1)(c),

for c ∈ (r, r + en+1. If we assume that the first N
derivatives of g vanishes at r then we get that

|en+1|
|en|N+1

= g(N+1)(c),

1

that is, the order of convergence is p = N + 1.

Example 1.5. Let r > 0. Consider we looking for
an iteration to approximate x = m

√
r. Define

g(x) =

N∑
k=0

akx
1−mkrk

. In order to find the coefficients ak for the maximal
OOC, one solves the following linear system:

• g
(
r1/m

)
=

N∑
k=0

ak
(
r1/m

)1−mk
rk =

N∑
k=0

akr
1/m =

r1/m

• g(k)
(
r1/m

)
= 0 for all k = 1, ...N .

1.2.2 Series acceleration

Aitken δ2 method Consider a convergent sequence
xn → r. As we already saw

xn+1 − r
xn − r

=
en+1

en
≈ g′(r) ≈ en+2

en+1
≈ xn+2 − r
xn+1 − r

Solve, xn+1−r
xn−r ≈

xn+2−r
xn+1−r for r to get

r ≈
xn+2xn − x2n+1

xn+2 − 2xn+1 + xn
= xn −

(xn − xn+1)2

xn+2 − 2xn+1 + xn

One use it to create accelerated sequence

x̃n = xn −
(xn − xn+1)2

xn+2 − 2xn+1 + xn
= xn −

(∆xn)2

∆2xn
,

where ∆xn = xn−xn+1 and therefore ∆2xn = ∆∆xn =
∆(xn − xn+1) = ∆xn − ∆xn+1 = (xn − xn+1) −
(xn+1 − xn+2).

The x̃n converges faster then xn in sense of

x̃n − r
xn − r

→ 0

Aitken Algorithm
For an iteration function g(n) and initial guess x0

1) calculate x1 = g(x0) and x2 = g(x1),
2) then calculate x̃
3) if |x̃− x| > tollerance continue to 1 with x0 = x1

There is no reason to use x1, since x̃ is better
approximation to r, thus the Aitken Algorithm can
be improved by Steffensen.
Steffensen Algorithm
For an iteration function g(n) and initial guess x0

1) calculate x1 = g(x0) and x2 = g(x1),
2) then calculate x̃
3) if |x̃− x| > tollerance continue to 1 with x0 = x̃

The algorithm have similar computational com-
plexity problem as Newton’s method: each step we
have to compute 2 functions. The half of the con-
solation is that we don’t have to know the deriva-
tive. Still, if function computation is costly it may
become a disadvantage. The convergence rate is at
best quadratic.

Steffenson Method Let g(x) be fixed point iter-
ation with a fixed point r = g(r). If f(r) = 0 then
h(x) = g(x)− f(x) is also an iteration function with
h(r) = r. Define g(x) = x+ f(x) and use Steffensen
Algorithm:

Given xn, one get xn+1 = g(xn) = xn + f(xn),
then ∆xn = xn − xn+1 = −f(xn) and ∆2xn =
−∆f(xn) = f(xn+1) − f(xn) = f(xn + f(xn)) −
f(xn). Finally define

xn+1 = x̃n = xn −
(f(xn))2

f(xn + f(xn))− f(xn)

The method has quadratic convergence rate. This is

sort of Secant with f ′(x) ≈ f(xn+f(xn))−f(xn)
f(xn)

. Sim-

ilarly, Applying g(x) = x + f(x) to Secant would
give

xn+1 = xn−1−f(xn−1)
f(xn−1)

f(xn−1 + f(xn−1))− f(xn−1)

Finally change xn−1 with xn to get the same result.

1.3 Durand–Kerner method

DK used for simultaneous finding of roots of poly-
nomial. Here is example for polynom of degree 3.
Consider a monic polynomial (coefficient of highest
degree =1). P3(x) = x3+a2x

2+a1x+a0 Let r1, r2, r3
be roots of P3, i.e. P3(x) = (x− r1)(x− r2)(x− r3).

A Newton like iteration for r1 is

rn+1
1 = rn1 −

Pn(rn1)

(rn1 − r2)(rn1 − r3)

the denominator is simply the derivative P ′m. Now
lets find all roots, starting with initial guess ~r0 =
(r01, r

0
2, r

0
3)

while
√
|rn1 |2 + |rn2 |2 + |rn3 |2 > ε

rn+1
1 = rn1 −

Pn(rn1)

(rn1 − r2)(rn1 − r3)

rn+1
2 = rn1 −

Pn(rn2)

(rn2 − r
n+1
1)(rn2 − rn3)

rn+1
3 = rn1 −

Pn(rn3)

(rn3 − r
n+1
1)(rn2 − r

n+1
2)

2

	 Root finding
	1.2
	Convergence Rate
	Series acceleration

	Durand–Kerner method

