Introduction to Numerical Analysis I Handout 5

1 Root finding

We consider equation $f(x)=0$.

1.2 Fixed Point Iteration

Consider a sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ given by

$$
x_{n+1}=g\left(x_{n}\right) .
$$

Each member of the sequence x_{n} is denoted an iteration and the function g is the iteration function. The main idea is that if $x_{n} \rightarrow \bar{x}$ and g is continuous then

$$
\bar{x}=\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} g\left(x_{n+1}\right)=g(\bar{x}) .
$$

Definition 1.1. A point $x \in X$ is called a fixed point of a function $g: X \rightarrow X$ if and only if $x=g(x)$.

Example 1.2. How to manipulate f to get fixed point iteration

1. The first option is to rewrite the formula such that x is be on the right hand side, for example $f(x)=x^{2}-2 x-3$ can be rewritten as $x=$ $\left(x^{2}-3\right) / 2=g(x)$ and then

$$
x_{n+1}=\left(x_{n}^{2}-3\right) / 2=g(x) .
$$

2. The other option $g(f(x), x)=f(x)+x=x$ and then

$$
x_{n+1}=f\left(x_{n}\right)+x_{n} .
$$

3. And even $g(f(x), x)=f(x) h(x)+x=x$ for $h(x) \neq 0$ and then

$$
x_{n+1}=f\left(x_{n}\right) h\left(x_{n}\right)+x_{n} .
$$

For example the Newton method suggests $h(x)=$ $-1 / f^{\prime}(x)$.

Theorem 1.3 (Fixed Point Theorem). Let $g(x)$ be differentiable function in a closed interval $I=$ $[a, b]$. If

- $g(x) \subset I$ for each $x \in I$ and
- $\left|g^{\prime}(x)\right|<1$ for each $x \in I$
then g is fixed point iteration function and there is unique $\bar{x} \in I$ such that $g(\bar{x})=\bar{x}$. In this case $x_{n+1}=$ $g\left(x_{n}\right) \rightarrow \bar{x}$ for any initial guess $x_{0} \in I$. Furthermore, there is exists a number $0<L<1$ such that $e_{n}=$ $\left|x_{n+1}-x\right| \leq L\left|x_{n}-x\right|$.
Proof: Existence: If $g(a)=a$ or $g(b)=b$ then we done. Otherwise, let $h(x)=g(x)-x$. Since since $a<g(x)<b$ it comes that $h(a)=g(a)-a>0$ and $h(b)=g(b)-b<0$ and therefore there is $\bar{x} \in I$ such that $0=h(\bar{x})=g(\bar{x})-\bar{x}$. Thus $\bar{x}=g(\bar{x})$.
Uniqueness: Assume g has two different fixed points $\bar{x}_{1} \neq \bar{x}_{2}$ in I. In this situation $h\left(\bar{x}_{1}\right)=0=h\left(\bar{x}_{2}\right)$ and therefore, by Roll's theorem, there is $c \in I$ such that $h^{\prime}(c)=0$. However $h^{\prime}(c)=g^{\prime}(c)-1=0$ means $g^{\prime}(c)=1$ which contradicts the assumption that $\left|g^{\prime}(x)\right|<1$ for each $x \in I$.

Convergence:

$$
\frac{\left|x_{n+1}-x\right|}{\left|x_{n}-x\right|}=\frac{\left|g\left(x_{n}\right)-g(x)\right|}{\left|x_{n}-x\right|} \rightarrow L=\left|g^{\prime}\left(x_{n}\right)\right|<1
$$

Thus $e_{n}=\left|x_{n+1}-x\right| \leq L\left|x_{n}-x\right|$
Note: Actually, the requirement that g^{\prime} is differentiable at the root is too strong. One may require instead that g is Lipschitz continues, that is there is a Lipschitz constant $0<L<1$ such that $|g(x)-g(y)| \leq L|x-y|$ for any $x, y \in I$. Any differentiable function is necessarily satisfy this condition with $L=\max _{x} g^{\prime}(x)$.
Theorem 1.4 (Another Useful Theorem). Let $g \in \mathcal{C}^{2}$ be twice continuously differentiable fixed point iteration and let $\bar{x}=g(\bar{x})$ be iteration point. If $g^{\prime}(\bar{x})<1$ then there is a neighborhood $N(\bar{x})$, s.t. $x_{n} \rightarrow \bar{x}$ for any initial guess $x_{0}=N(\bar{x})$.

1.2.1 Convergence Rate

Consider linear approximation of the error: $e_{n+1}=$ $x_{n+1}-r=-r+g\left(x_{n}\right)=-r+g\left(r+e_{n}\right) \approx-r+g(r)+$ $e_{n} g^{\prime}(r)=e_{n} g^{\prime}(r)$. Thus we learn that $\left|e_{n+1}\right| \approx$ $\left|e_{n}\right| \cdot\left|g^{\prime}(r)\right|$ and that the smaller $\left|g^{\prime}(r)\right|$ the faster the convergence. Furthermore, consider the Taylor expansion of the error
$e_{n+1} \approx-r+g(r)+\sum_{k=1}^{N} \frac{e_{n}^{k}}{k!} g^{(n)}(r)+\frac{e_{n}^{N+1}}{(N+1)!} g^{(N+1)}(c)$,
for $c \in\left(r, r+e_{n+1}\right.$. If we assume that the first N derivatives of g vanishes at r then we get that

$$
\frac{\left|e_{n+1}\right|}{\left|e_{n}\right|^{N+1}}=g^{(N+1)}(c),
$$

that is, the order of convergence is $p=N+1$.
Example 1.5. Let $r>0$. Consider we looking for an iteration to approximate $x=\sqrt[m]{r}$. Define

$$
g(x)=\sum_{k=0}^{N} a_{k} x^{1-m k} r^{k}
$$

. In order to find the coefficients a_{k} for the maximal OOC, one solves the following linear system:

- $g\left(r^{1 / m}\right)=\sum_{k=0}^{N} a_{k}\left(r^{1 / m}\right)^{1-m k} r^{k}=\sum_{k=0}^{N} a_{k} r^{1 / m}=$ $r^{1 / m}$
- $g^{(k)}\left(r^{1 / m}\right)=0$ for all $k=1, \ldots N$.

1.2.2 Series acceleration

Aitken δ^{2} method Consider a convergent sequence $x_{n} \rightarrow r$. As we already saw

$$
\frac{x_{n+1}-r}{x_{n}-r}=\frac{e_{n+1}}{e_{n}} \approx g^{\prime}(r) \approx \frac{e_{n+2}}{e_{n+1}} \approx \frac{x_{n+2}-r}{x_{n+1}-r}
$$

Solve, $\frac{x_{n+1}-r}{x_{n}-r} \approx \frac{x_{n+2}-r}{x_{n+1}-r}$ for r to get

$$
r \approx \frac{x_{n+2} x_{n}-x_{n+1}^{2}}{x_{n+2}-2 x_{n+1}+x_{n}}=x_{n}-\frac{\left(x_{n}-x_{n+1}\right)^{2}}{x_{n+2}-2 x_{n+1}+x_{n}}
$$

One use it to create accelerated sequence

$$
\tilde{x}_{n}=x_{n}-\frac{\left(x_{n}-x_{n+1}\right)^{2}}{x_{n+2}-2 x_{n+1}+x_{n}}=x_{n}-\frac{\left(\Delta x_{n}\right)^{2}}{\Delta^{2} x_{n}}
$$

where $\Delta x_{n}=x_{n}-x_{n+1}$ and therefore $\Delta^{2} x_{n}=\Delta \Delta x_{n}=$ $\Delta\left(x_{n}-x_{n+1}\right)=\Delta x_{n}-\Delta x_{n+1}=\left(x_{n}-x_{n+1}\right)-$ $\left(x_{n+1}-x_{n+2}\right)$.

The \tilde{x}_{n} converges faster then x_{n} in sense of

$$
\frac{\tilde{x}_{n}-r}{x_{n}-r} \rightarrow 0
$$

Aitken Algorithm

For an iteration function $g(n)$ and initial guess x^{0}

1) calculate $x_{1}=g\left(x_{0}\right)$ and $x_{2}=g\left(x_{1}\right)$,
2) then calculate \tilde{x}
3) if $|\tilde{x}-x|>$ tollerance continue to 1 with $x_{0}=x_{1}$

There is no reason to use x_{1}, since \tilde{x} is better approximation to r, thus the Aitken Algorithm can be improved by Steffensen.

Steffensen Algorithm

For an iteration function $g(n)$ and initial guess x^{0}

1) calculate $x_{1}=g\left(x_{0}\right)$ and $x_{2}=g\left(x_{1}\right)$,
2) then calculate \tilde{x}
3) if $|\tilde{x}-x|>$ tollerance continue to 1 with $x_{0}=\tilde{x}$

The algorithm have similar computational complexity problem as Newton's method: each step we have to compute 2 functions. The half of the consolation is that we don't have to know the derivative. Still, if function computation is costly it may become a disadvantage. The convergence rate is at best quadratic.

Steffenson Method Let $g(x)$ be fixed point iteration with a fixed point $r=g(r)$. If $f(r)=0$ then $h(x)=g(x)-f(x)$ is also an iteration function with $h(r)=r$. Define $g(x)=x+f(x)$ and use Steffensen Algorithm:

Given x_{n}, one get $x_{n+1}=g\left(x_{n}\right)=x_{n}+f\left(x_{n}\right)$, then $\Delta x_{n}=x_{n}-x_{n+1}=-f\left(x_{n}\right)$ and $\Delta^{2} x_{n}=$ $-\Delta f\left(x_{n}\right)=f\left(x_{n+1}\right)-f\left(x_{n}\right)=f\left(x_{n}+f\left(x_{n}\right)\right)-$ $f\left(x_{n}\right)$. Finally define

$$
x_{n+1}=\tilde{x}_{n}=x_{n}-\frac{\left(f\left(x_{n}\right)\right)^{2}}{f\left(x_{n}+f\left(x_{n}\right)\right)-f\left(x_{n}\right)}
$$

The method has quadratic convergence rate. This is sort of Secant with $f^{\prime}(x) \approx \frac{f\left(x_{n}+f\left(x_{n}\right)\right)-f\left(x_{n}\right)}{f\left(x_{n}\right)}$. Similarly, Applying $g(x)=x+f(x)$ to Secant would give
$x_{n+1}=x_{n-1}-f\left(x_{n-1}\right) \frac{f\left(x_{n-1}\right)}{f\left(x_{n-1}+f\left(x_{n-1}\right)\right)-f\left(x_{n-1}\right)}$
Finally change x_{n-1} with x_{n} to get the same result.

1.3 Durand-Kerner method

DK used for simultaneous finding of roots of polynomial. Here is example for polynom of degree 3 . Consider a monic polynomial (coefficient of highest degree $=1$). $P_{3}(x)=x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ Let r_{1}, r_{2}, r_{3} be roots of P_{3}, i.e. $P_{3}(x)=\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-r_{3}\right)$.

A Newton like iteration for r_{1} is

$$
r_{1}^{n+1}=r_{1}^{n}-\frac{P_{n}\left(r_{1}^{n}\right)}{\left(r_{1}^{n}-r_{2}\right)\left(r_{1}^{n}-r_{3}\right)}
$$

the denominator is simply the derivative P_{m}^{\prime}. Now lets find all roots, starting with initial guess $\vec{r}_{0}=$ $\left(r_{1}^{0}, r_{2}^{0}, r_{3}^{0}\right)$
while $\sqrt{\left|r_{1}^{n}\right|^{2}+\left|r_{2}^{n}\right|^{2}+\left|r_{3}^{n}\right|^{2}}>\epsilon$

$$
\begin{gathered}
r_{1}^{n+1}=r_{1}^{n}-\frac{P_{n}\left(r_{1}^{n}\right)}{\left(r_{1}^{n}-r_{2}\right)\left(r_{1}^{n}-r_{3}\right)} \\
r_{2}^{n+1}=r_{1}^{n}-\frac{P_{n}\left(r_{2}^{n}\right)}{\left(r_{2}^{n}-r_{1}^{n+1}\right)\left(r_{2}^{n}-r_{3}^{n}\right)} \\
r_{3}^{n+1}=r_{1}^{n}-\frac{P_{n}\left(r_{3}^{n}\right)}{\left(r_{3}^{n}-r_{1}^{n+1}\right)\left(r_{2}^{n}-r_{2}^{n+1}\right)}
\end{gathered}
$$

