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1 Root finding

We consider equation f(z) = 0.

1.2 Fixed Point Iteration

Consider a sequence {x,}°2 , given by

Tng1 = g(zp).

Each member of the sequence x,, is denoted an iter-
ation and the function g is the iteration function.
The main idea is that if x,, — Z and g is continuous
then

Z= lim 2,4y = lim g(zni1) = g(2).
Definition 1.1. A point z € X is called a fixed
point of a function g : X — X if and only if z = g(x).

Example 1.2. How to manipulate f to get fixed
point iteration

1. The first option is to rewrite the formula such
that x is be on the right hand side, for example
f(z) = 2% — 22 — 3 can be rewritten as z =
(22 — 3)/2 = g() and then

Tp1 = (X

2. The other option g(f(z),z) = f(z) + = =«
and then

Tn+1 = f(l'n) + Zn.

3. And even g(f(x),z) = f(x)h(z) + 2 = z for
h(z) # 0 and then

= f(zn)h(zy) + zp-

Tn+1

For example the Newton method suggests h(x) =

—1/f'(x).

Theorem 1.3 (Fixed Point Theorem). Let g(x)
be differentiable function in a closed interval I =
[a,b]. If

e g(z) C I for each z € I and

o |¢'(x)| < 1foreach x el

then g is fixed point iteration function and there is
unique T € I such that g(z) = z. In this case x, 41 =
g(x,) — T for any initial guess xg € I. Furthermore,
there is exists a number 0 < L < 1 such that e, =
|€pt1 — x| < L|x, — |-

Proof: Existence: If g(a) = a or g(b) = b then we
done. Otherwise, let h(x) = g(z) — z. Since since
a < g(x) < b it comes that h(a) = g(a) —a > 0 and
h(b) = g(b) — b < 0 and therefore there is Z € I such
that 0 = h(Z) = ¢g(&) — Z. Thus Z = ¢g(Z).
Uniqueness: Assume g has two different fixed points
Z1 # T2 in I. In this situation h(Z1) = 0 = h(Z2)
and therefore, by Roll’s theorem, there is ¢ € I such
that h'(c) = 0. However h'(c) = ¢'(¢) =1 = 0
means ¢'(¢) = 1 which contradicts the assumption
that |¢’(x)| < 1 for each z € I.

Convergence:
"rn+1_x| — |g(ﬂcn)—g($)| —>L=|g/(mn)|<1
|z, — x| |z, — x|

Thus e, = |21 — 2| < L|z, — ]

Note: Actually, the requirement that ¢’ is dif-
ferentiable at the root is too strong. One may re-
quire instead that g is Lipschitz continues, that is
there is a Lipschitz constant 0 < L < 1 such that
lg(z) — g(y)| < L)z — y| for any x,y € I. Any differ-
entiable function is necessarily satisfy this condition
with L = mgxg'(a:).

Theorem 1.4 (Another Useful Theorem). Let
g € C? be twice continuously differentiable fixed point
iteration and let & = ¢(Z) be iteration point. If
¢'(Z) < 1 then there is a neighborhood N(Z), s.t
Z, — T for any initial guess g = N(Z).

1.2.1 Convergence Rate

Consider linear approximation of the error: e,41 =
Tnt1—1 = —1+9(xy) = —r+g(r+e,) =~ —r T)+
eng' (1) = eng’(r). Thus we learn that |e,. 1| ~
len| - 19’(r)| and that the smaller |¢'(r)| the faster
the convergence. Furthermore, consider the Taylor
expansion of the error

ent1 = %(/HZ k’{ g™ (r)

for ¢ € (r,r 4+ eyy1. If we assume that the first N
derivatives of g vanishes at r then we get that

eN+1
nig(NH)( )
(N + 1!

‘en+1| _
ey [N H1

9

(N+1)(C)

)



that is, the order of convergence is p = N + 1.

Example 1.5. Let r > 0. Consider we looking for
an iteration to approximate x = %/7. Define

N
_ § akxl—nbk,rk
k=0

. In order to find the coefficients a;, for the maximal
OOC, one solves the following linear system:

1/m X pl/mymmE
e g () = 3 (1)

Z aprt/

,rl/m

° g(k) (Tl/m) =0forall k=1,...N.

1.2.2 Series acceleration

Aitken 62 method Consider a convergent sequence
Ty, — r. As we already saw

$n+1 -Tr o 6'rH»l ~ g/(r) ~ en+2 —~ xn+2 -Tr
Ty — T €n €ntl  Tppl —T
Solve, Tntl=T ~ Znd2°7 for 1 to get

Typ—T Tpp1—T

(xn - mn+1)2
- an-&-l + z,

2
Tn42Tn — Tpy1
r =Ty —
Tn42 — 2xn+1 + zn

Tn42

One use it to create accelerated sequence

(Ar,)?
Az, ’

2
~ (xn - (En+1)
n = Tn — -
Tn+2 — an-‘rl + Tn

where Az,, = x,,—x,1 and therefore A%z, = AAzx, =
A(xn - xn—&-l) = Az, — A-77n-i-1 = (xn - xn-{-l) -
(Tnt1 — Tny2).
The Z,, converges faster then x,, in sense of
M — 0
Ty — T
Aitken Algorithm
For an iteration function g(n) and initial guess
1) calculate z1 = g(xp) and x2 = g(x1),
2) then calculate &
3) if |& — x| > tollerance continue to 1 with xo = 3

0

There is no reason to use x1, since I is better
approximation to r, thus the Aitken Algorithm can
be improved by Steffensen.

Steffensen Algorithm

For an iteration function g(n) and initial guess x
1) calculate z1 = g(zp) and z2 = g(x1),

2) then calculate

3) if |Z — x| > tollerance continue to 1 with ¢ =

0

The algorithm have similar computational com-
plexity problem as Newton’s method: each step we
have to compute 2 functions. The half of the con-
solation is that we don’t have to know the deriva-
tive. Still, if function computation is costly it may
become a disadvantage. The convergence rate is at
best quadratic.

Steffenson Method Let g(x) be fixed point iter-
ation with a fixed point r = g(r). If f(r) = 0 then
h(z) = g(x) — f(z) is also an iteration function with
h(r) = r. Define g(x) = x + f(z) and use Steffensen
Algorithm:

Given x,, one get ;1:n+1 = g(zn) = xn + f(zn),
then Az, = 2, — 2,41 = —f(z,) and A%z, =
—Af(@n) = flans1) — flan) = f(@n + f(@0)) —
f(zy). Finally define

(f(zn))?
f(@n + f(zn)) — f(zn)

The method has quadratic convergence rate. This is

sort of Secant with f/(z) ~ f(w"+f}t;3;7f($"). Sim-

ilarly, Applying g(z) = = + f(x) to Secant would
give

Tn+1 :-i‘n =Tp —

f(mnfl)

Tn+l1 = xnfl_f(xnfl)

f(xn—l + f(xn—l)) - f(xn—l)

Finally change z,,_1 with x,, to get the same result.

1.3 Durand-Kerner method

DK used for simultaneous finding of roots of poly-

nomial. Here is example for polynom of degree 3.

Consider a monic polynomial (coefficient of highest

degree =1). P3(z) = 23 +asx®+ajx+ag Let 1, 79,73

be roots of Ps, i.e. P3(x) = (x —r1)(xz —1r2)(x — r3).
A Newton like iteration for r; is

Po(r?)

(rf —r2)(rf —73)

n+1 n
rnoo=Tr -

the denominator is simply the derivative P;,. Now
lets find all roots, starting with initial guess iy =
(9,75, 78)

while \/\r |24 |r5)2 + |rF]? >

n+l rn _ n(’]" )
" bt = r)(rf )
Tn+1 — ( )
? P =Ty )
N G P, (7’3)
’ oy =ty — eyt
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