
Introduction to Numerical Analysis I
Handout 2

1 Computer Representation of
Numbers

1.1 The integers

An integer can be expressed as (w.l.o.g., n > 0)

n =

p∑
k=0

skb
k,

where 0 ≤ sk < b are digits.

• The common case is b = 10, i.e. decimal (decimal-
base) representation.

• On computers numbers are represented in bi-
nary base, b = 2,

• the other useful bases are octal (b = 8), and

• the hexadecimal (b = 16).

To reduce ambiguity, the basis b is added in a sub-
script of the number, e.g. 1016 = 1610 = 188.

1.1.1 Basis change

b = 2
b = 8 b = 10 b = 16 s3 s2 s1 s0

0 0 0 0 0 0 0
1 1 1 0 0 0 1
2 2 2 0 0 1 0
3 3 3 0 0 1 1
4 4 4 0 1 0 0
5 5 5 0 1 0 1
6 6 6 0 1 1 0
7 7 7 0 1 1 1
10 8 8 1 0 0 0
11 9 9 1 0 0 1
12 10 A 1 0 1 0
13 11 B 1 0 1 1
14 12 C 1 1 0 0
15 13 D 1 1 0 1
16 14 E 1 1 1 0
17 15 F 1 1 1 1

Table 1: Octal, Decimal, Hexadecimal and Binary
numbers

• From binary to octal: Separate the binary
number into triples sing a space or a comma
(add leading zeroes if required), then and con-
vert the value of the tuple using the Table 1 to
the octal base.

• From binary to hexadecimal: Separate the
binary number into quadruples using a space
or a comma (add leading zeroes if required),
then convert the value of the tuple using the
Table 1 to the hexadecimal base.

• From the octal/hexadecimal to the bi-
nary basis: Similar to the above (just an op-
posite direction).

• From octal to hexadecimal (or vise verse)
Change from octal to binary then from binary
to hexadecimal (or vise verse).

Algorithm 1: Change from base-10 to base-2
for integers
Input: decimal integer n
Output: binary number spsp−1...s1s0
j=0
while n 6= 0 do

sj = ReminderOf(n/2) // sj ∈ {0, 1}
n = IntegralPartOf(n/2)
j=j+1

end

1.2 The Real Numbers

A real number can be expressed in binary basis as
(w.l.o.g., consider 0 < f < 1, i.e. f = 0.s1...sp)

f =

p∑
k=1

sk2−k

Example 1.1. Assume m = 5. The smallest frac-
tion under this assumption is ε = 0.000012. Let us
look into the previous and the next numbers to the
number 0.110012 = 25

32 from example ??, by adding
and subtracting ε to it:

0.110012 + ε = 0.110102 =
= 1 · 2−1 + 1 · 2−2 + 0 · 2−3 + 1 · 2−4 + 0 · 2−5 = 13

15

0.110012 − ε = 0.110002 =
= 1 · 2−1 + 1 · 2−2 + 0 · 2−3 + 0 · 2−4 + 0 · 2−5 = 3

4

Note: we found that for m = 5, the fraction 25
32 rep-

resents all real numbers in interval
(
3
4 ,

13
15

)
. Thus, we

figured that not all real numbers can be represented
on computers, therefore they are approximated.

1

1.2.1 Basis change

Algorithm 2: Change from base-10 to base-2
for real numbers in [0, 1)

Input: real number α ∈ [0, 1), basis 2
Output: binary number 0.s0s1...sp−1sp
j=1
while α 6= 0 and j <= m /* num of bits */ do

sj = IntegralPartOf(2 · α) // sj ∈ [0, 2)
α = ReminderOf(2 · α)
j=j+1

end

Example 1.2. In Table 2 one see example of trans-
lation of 0.110 into binary basis (for m = 5, the re-
sulting number reads from top to bottom of the in-
tegral part column: 0.00011. Note: A number, with

2α Remainder Integral part

0.1 * 2 0.2 0
0.2 * 2 0.4 0
0.4 * 2 0.8 0
0.8 * 2 0.6 1
0.6 * 2 0.2 1

Table 2: Example of changing from decimal to binary
for real numbers

finite decimal representation have infinite represen-
tation in binary. Another reason for approximation
of real numbers.

1.3 The Floating Point Representation

The standard representation of real numbers is floating-
point representation. This representation is closely
related to so called scientific notation, e.g.

+6132.789 = +0.6132789e4 = +0.6132789× 104

but in binary basis, i.e. the exponential part would
be powers of 2. Thus, the real number in Floating
Point representation would be given by

r = (−1)
sign · 2e ·M

where the exponent −2n−2 < e < 2n−1 is a signed
number (n is number of bits) and the mantissa M
represent the most significant digits of r. The range
of mantissa is

1

2
≤M < 1.

The lower bound mean that the most significant bit
will be 1, which is designed to increase the accuracy,

since more bits can be used for significant digits. For
example (1.s1s2...)2 × 2e instead of (0.01s1s2...)2 ×
2e + 2. Note that the part of ‘1.’ doesn’t have to use
any space in memory, it could be implied.

The standard today is 32 or 64 bits in the follow-
ing form

Precision Total sign e range of e M

single 32 1 8 −126 : 127 23
double 64 1 11 −1022 : 1023 52

Example 1.3. In this example we see several num-
bers represented in 64 bit double precision floating
point representation:
8
3 = (−1)

0 · 22
(
1
2 + 1

8 + 1
32 + ...+ 1

252

)
=

0|
11 bit︷ ︸︸ ︷

0|0...010 |
52 bit︷ ︸︸ ︷

(1.) 01...0101
The smallest (positive) number:

0|
11 bit︷ ︸︸ ︷

1|1...11 |
52 bit︷ ︸︸ ︷

(1.) 00...0 = +2−1022·1
2

= 2−1023 ≈ 10−307

The biggest number: 0|
11 bit︷ ︸︸ ︷

0|1...11 |
52 bit︷ ︸︸ ︷

(1.) 11...11 =

21023
52∑

n=1

2−n = 21023
(

2−52 − 1

1/2− 1
− 1

)
= 21023 ≈ 10307

Definition 1.4. (Overflow & Underflow)
The term underflow is a condition where the result
of a calculation is a smaller number than the com-
puter can actually store in memory.

The term overflow is a condition where the result of
a calculation is a greater number than the computer
can actually store in memory.

Example 1.5.

• The overflow is easy to show in integers, for
example if the numbers are represented by m =
5 bits, then if one adds the biggest number to
another (even the smaller one) the result will
be 111112 + 000012 = 1|000002. The computer
will end with 000002 and ‘carry’ flag.

• In example 1.3 we wound that on a computer
with double precision the smallest number is
ν = 2−1023, the underflow happens for ν/2.

Note: You may not see the underflow using the exam-

ple above. This is due to the subnormal numbers

representation. The trick is in violating the rule of “no

leading zeros” in mantissa. This way, the significant

digits lost gradually.

2

	Computer Representation of Numbers
	The integers
	Basis change

	The Real Numbers
	Basis change

	The Floating Point Representation

