
Introduction to Numerical Analysis I
Handout 1

1 Calculus Review

Definition 1.1. A function f is continuous at the point x=a if for any ε > 0, there exists δ > 0

such that for all x in the domain of f with c− δ < x < c+ δ, the value of f(x) satisfies

f(a)− ε < f(x) < f(a) + ε.

More simple version: A function f is continuous at the point x=a if lim
x→a

f(x) = f(a).

Definition 1.2. A function f is continuous on the interval I if lim
x→a

f(x) = f(a) for every x ∈ I.

Definition 1.3. I function f is continuous on the interval I then f attain maximum and minimum

on I.

Theorem 1.4 (Intermediate Value Theorem). Let function f be continuous on the closed

interval I, and let

N ∈ [min
x∈I

f(x),max
x∈I

f(x)],

i.e. N is in the range of f , then there is exists c ∈ I, such that f(c) = N .

Theorem 1.5 (Mean Value Theorem). Let function f be continuous on the closed interval [a, b]

and differentiable on an open integral (a, b), then there is exists c ∈ (a, b), such that

f ′(c) =
f(a)− f(b)

a− b
.

Theorem 1.6 (Mean Value Theorem for Integrals). Let function f be continuous on the closed

interval [a, b] and let w(x) be non negative and integrable on [a, b], then there is exists c ∈ (a, b),

such that
b∫

a

f(x)w(x)dx = f(c)

b∫
a

w(x)dx.

Note:A more common version of this theorem is given by the particular case of w(x) = 1, so that
b∫
a

w(x)dx =
b∫
a

dx = b− a, and so f(c) is an average value of f :

f(c) =
1

b− a

b∫
a

f(x)dx.

Definition 1.7 (Taylor’s Polynomial & Series/Expansion). Let f have n+ 1 (n ≥ 0) contin-
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uous derivatives on [a, b] and let x, x0 ∈ [a, b] , then Taylor Series are given by

f(x) = Tn(x) +Rn+1(x),

where Tn is the Taylor polynomial of nth order given by

Tn(x) =

n∑
j=1

f (j)(x0)

j!
(x− x0)j

and Rn+1(x) =
∞∑

j=n+1

f(j)(x0)
j! (x−x0)j is the remainder. It can be proven that there is exists c ∈ [a, b],

such that

Rn+1(x) =
f (n+1)(c)

(n+ 1)!
(x− x0)n+1

1.1 Asymptotic Order Notations

Definition 1.8. We denote f(x) = O(g(x)) (, i.e. “f is O g”) as x→ a and say that f(x) is bounded

above by g(x) in the vicinity of a if there is exists numbers M and δ, such that |f(x)| ≤ M |g(x)|
for x ∈ (a− δ, a+ δ).

Similarly, f(x) is bounded above by g(x) at infinity, i.e. f(x) = O(g(x)) as x→∞ if there exists

numbers M and x0 such that |f(x)| ≤M |g(x)| for x ≥ x0.

Example 1.9. Given a polynomial

Pn(x) = a0 + a1x+ a2x
2 + ...+ anx

n,

It is easy to see that Pn(x) = O(xn).

Example 1.10. Consider f(a+ h) is approximated by Taylor polynomial of second order, i.e. T2,

about a, then

f(a+ h) ≈ f(a) + hf ′(a) +
h2

2
f ′′(a),

where h considered small number. The error term is given by f(a+h)−f(a) = R3(a+h) = h3

6 f
′′′(c)

for some c ∈ (a, a+ h). Note that R3(a+ h) = O(h3) as h→ 0 and therefore one writes

f(a+ h) = f(a) + hf ′(a) +
h2

2
f ′′(a) +O(h3)
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