Introduction to Numerical Analysis I
 Handout 1

1 Calculus Review

Definition 1.1. A function f is continuous at the point $\mathrm{x}=\mathrm{a}$ if for any $\varepsilon>0$, there exists $\delta>0$ such that for all x in the domain of f with $c-\delta<x<c+\delta$, the value of $f(x)$ satisfies

$$
f(a)-\varepsilon<f(x)<f(a)+\varepsilon
$$

More simple version: A function f is continuous at the point $x=a$ if $\lim _{x \rightarrow a} f(x)=f(a)$.
Definition 1.2. A function f is continuous on the interval I if $\lim _{x \rightarrow a} f(x)=f(a)$ for every $x \in I$.
Definition 1.3. I function f is continuous on the interval I then f attain maximum and minimum on I.

Theorem 1.4 (Intermediate Value Theorem). Let function f be continuous on the closed interval I, and let

$$
N \in\left[\min _{x \in I} f(x), \max _{x \in I} f(x)\right],
$$

i.e. N is in the range of f, then there is exists $c \in I$, such that $f(c)=N$.

Theorem 1.5 (Mean Value Theorem). Let function f be continuous on the closed interval $[a, b]$ and differentiable on an open integral (a, b), then there is exists $c \in(a, b)$, such that

$$
f^{\prime}(c)=\frac{f(a)-f(b)}{a-b}
$$

Theorem 1.6 (Mean Value Theorem for Integrals). Let function f be continuous on the closed interval $[a, b]$ and let $w(x)$ be non negative and integrable on $[a, b]$, then there is exists $c \in(a, b)$, such that

$$
\int_{a}^{b} f(x) w(x) d x=f(c) \int_{a}^{b} w(x) d x
$$

Note: A more common version of this theorem is given by the particular case of $w(x)=1$, so that $\int_{a}^{b} w(x) d x=\int_{a}^{b} d x=b-a$, and so $f(c)$ is an average value of f :

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Definition 1.7 (Taylor's Polynomial \& Series/Expansion). Let f have $n+1(n \geq 0)$ contin-
uous derivatives on $[a, b]$ and let $x, x_{0} \in[a, b]$, then Taylor Series are given by

$$
f(x)=T_{n}(x)+R_{n+1}(x)
$$

where T_{n} is the Taylor polynomial of $\mathrm{n}^{\text {th }}$ order given by

$$
T_{n}(x)=\sum_{j=1}^{n} \frac{f^{(j)}\left(x_{0}\right)}{j!}\left(x-x_{0}\right)^{j}
$$

and $R_{n+1}(x)=\sum_{j=n+1}^{\infty} \frac{f^{(j)}\left(x_{0}\right)}{j!}\left(x-x_{0}\right)^{j}$ is the remainder. It can be proven that there is exists $c \in[a, b]$, such that

$$
R_{n+1}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

1.1 Asymptotic Order Notations

Definition 1.8. We denote $f(x)=O(g(x))$ (, i.e. " f is $O g$ ") as $x \rightarrow a$ and say that $f(x)$ is bounded above by $g(x)$ in the vicinity of a if there is exists numbers M and δ, such that $|f(x)| \leq M|g(x)|$ for $x \in(a-\delta, a+\delta)$.

Similarly, $f(x)$ is bounded above by $g(x)$ at infinity, i.e. $f(x)=O(g(x))$ as $x \rightarrow \infty$ if there exists numbers M and x_{0} such that $|f(x)| \leq M|g(x)|$ for $x \geq x_{0}$.

Example 1.9. Given a polynomial

$$
P_{n}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}
$$

It is easy to see that $P_{n}(x)=O\left(x^{n}\right)$.
Example 1.10. Consider $f(a+h)$ is approximated by Taylor polynomial of second order, i.e. T_{2}, about a, then

$$
f(a+h) \approx f(a)+h f^{\prime}(a)+\frac{h^{2}}{2} f^{\prime \prime}(a)
$$

where h considered small number. The error term is given by $f(a+h)-f(a)=R_{3}(a+h)=\frac{h^{3}}{6} f^{\prime \prime \prime}(c)$ for some $c \in(a, a+h)$. Note that $R_{3}(a+h)=O\left(h^{3}\right)$ as $h \rightarrow 0$ and therefore one writes

$$
f(a+h)=f(a)+h f^{\prime}(a)+\frac{h^{2}}{2} f^{\prime \prime}(a)+O\left(h^{3}\right)
$$

