Introduction to Numerical Analysis I Handout 1

1 Calculus Review

Definition 1.1. A function f is continuous at the point x=a if for any $\varepsilon > 0$, there exists $\delta > 0$ such that for all x in the domain of f with $c - \delta < x < c + \delta$, the value of f(x) satisfies

$$f(a) - \varepsilon < f(x) < f(a) + \varepsilon.$$

More simple version: A function f is continuous at the point x=a if $\lim_{x\to a} f(x) = f(a)$.

Definition 1.2. A function f is continuous on the interval I if $\lim_{x\to a} f(x) = f(a)$ for every $x \in I$.

Definition 1.3. I function f is continuous on the interval I then f attain maximum and minimum on I.

Theorem 1.4 (Intermediate Value Theorem). Let function f be continuous on the closed interval I, and let

$$N \in [\min_{x \in I} f(x), \max_{x \in I} f(x)],$$

i.e. N is in the range of f, then there is exists $c \in I$, such that f(c) = N.

Theorem 1.5 (Mean Value Theorem). Let function f be continuous on the closed interval [a, b] and differentiable on an open integral (a, b), then there is exists $c \in (a, b)$, such that

$$f'(c) = \frac{f(a) - f(b)}{a - b}.$$

Theorem 1.6 (Mean Value Theorem for Integrals). Let function f be continuous on the closed interval [a, b] and let w(x) be non negative and integrable on [a, b], then there is exists $c \in (a, b)$, such that

$$\int_{a}^{b} f(x)w(x)dx = f(c)\int_{a}^{b} w(x)dx.$$

Note: A more common version of this theorem is given by the particular case of w(x) = 1, so that $\int_{a}^{b} w(x)dx = \int_{a}^{b} dx = b - a$, and so f(c) is an average value of f:

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx.$$

Definition 1.7 (Taylor's Polynomial & Series/Expansion). Let f have n + 1 ($n \ge 0$) contin-

uous derivatives on [a, b] and let $x, x_0 \in [a, b]$, then Taylor Series are given by

$$f(x) = T_n(x) + R_{n+1}(x),$$

where T_n is the Taylor polynomial of n^{th} order given by

$$T_n(x) = \sum_{j=1}^n \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j$$

and $R_{n+1}(x) = \sum_{j=n+1}^{\infty} \frac{f^{(j)}(x_0)}{j!} (x-x_0)^j$ is the remainder. It can be proven that there is exists $c \in [a, b]$, such that

$$R_{n+1}(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$$

1.1 Asymptotic Order Notations

Definition 1.8. We denote f(x) = O(g(x)) (, i.e. "f is O(g)") as $x \to a$ and say that f(x) is bounded above by g(x) in the vicinity of a if there is exists numbers M and δ , such that $|f(x)| \le M |g(x)|$ for $x \in (a - \delta, a + \delta)$.

Similarly, f(x) is bounded above by g(x) at infinity, i.e. f(x) = O(g(x)) as $x \to \infty$ if there exists numbers M and x_0 such that $|f(x)| \le M |g(x)|$ for $x \ge x_0$.

Example 1.9. Given a polynomial

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n,$$

It is easy to see that $P_n(x) = O(x^n)$.

Example 1.10. Consider f(a + h) is approximated by Taylor polynomial of second order, i.e. T_2 , about a, then

$$f(a+h) \approx f(a) + hf'(a) + \frac{h^2}{2}f''(a),$$

where h considered small number. The error term is given by $f(a+h) - f(a) = R_3(a+h) = \frac{h^3}{6}f'''(c)$ for some $c \in (a, a+h)$. Note that $R_3(a+h) = O(h^3)$ as $h \to 0$ and therefore one writes

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2}f''(a) + O(h^3)$$